

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: III

Branch: CSE (IoT & Cybersecurity including Blockchain)

Duration: 3 hrs.

Course Code: 23IC3PCEDS

Max Marks: 100

Course: Embedded Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain the major technologies which play a key role in IoT		<i>CO1</i>	<i>PO1</i>	05
		b)	Identify and discuss the communication model and communication API that should be used for Live noise monitoring systems. Choose the appropriate IoT level for the same system with justification.		<i>CO2</i>	<i>PO2</i>	10
		c)	Analyze the design requirements of an IoT system for tracking package handling and choose the appropriate IoT level with justification.		<i>CO2</i>	<i>PO2</i>	05
			UNIT - II				
	2	a)	Discuss any five parameters to be considered while selecting sensors for an IoT system.		<i>CO1</i>	<i>PO1</i>	05
		b)	Analyze the functionalities of I/O pins of Arduino Uno. Discuss how digital Read/Write pins behave like analog Write pins.		<i>CO2</i>	<i>PO2</i>	05
		c)	Discuss the following in detail (i) Sensors and Actuators. (ii) Connecting Smart Objects.		<i>CO2</i>	<i>PO2</i>	10
			UNIT - III				
	3	a)	Design smart lighting system (circuit design and interfacing program) using LDR (Light dependent Resistor) and LED. When light intensity goes below 50% of sensor value the LED should glow automatically.		<i>CO3</i>	<i>PO2</i>	07
		b)	The shaft function sets the position of the servo motor according to potentiometer value. Write an Arduino program to implement the shaft function using servo motor and potentiometer.		<i>CO3</i>	<i>PO2</i>	06
		c)	Analyze how an IoT system can be developed which controls switching ON/OFF of AC according to ambient temperature.		<i>CO3</i>	<i>PO2</i>	07

		OR			
4	a)	Consider a scenario of a chemical factory where highly inflammable materials are used. Design an IoT system such that workers are automatically alerted by red light and sound in case fire is detected.	<i>CO3</i>	<i>PO2</i>	10
	b)	i) Implement an automated door bell system. ii) Implement a water level indicator system.	<i>CO3</i>	<i>PO2</i>	10
UNIT - IV					
5	a)	Write and explain the program to activate the LED and buzzer using Raspberry pi.	<i>CO3</i>	<i>PO2</i>	08
	b)	Write a short note on various raspberry pi interfaces used for data transfer.	<i>CO1</i>	<i>PO1</i>	07
	c)	Justify how Raspberry Pi is different from a desktop computer	<i>CO1</i>	<i>PO1</i>	05
OR					
6	a)	Illustrate how to interface a LED to raspberry pi and write a program to blink.	<i>CO3</i>	<i>PO2</i>	07
	b)	Design an automatic lightning system with LDR, Light and raspberry pi and write a python program to support the working of that design.	<i>CO3</i>	<i>PO2</i>	08
	c)	Describe various features of a Raspberry Pi device.	<i>CO1</i>	<i>PO1</i>	05
UNIT - V					
7	a)	Explain functional and operational view specifications for Home Intrusion detection system?	<i>CO2</i>	<i>PO2</i>	10
	b)	Formulate an Industrial application of the IoT system and brief on the various use case of smart and connected cities.	<i>CO2</i>	<i>PO2</i>	10
