

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: CSE (IoT & Cybersecurity including Blockchain)

Duration: 3 hrs.

Course Code: 23IC5PEACN

Max Marks: 100

Course: ADVANCED COMPUTER NETWORK

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			CO	PO	Marks
1	a)	Demonstrate link state routing algorithm to compute the least cost path from source to destination where A is the source node	CO2	PO1	10
			OR		
2	a)	Analyze the ARP packet format to identify the key fields involved in mapping an IP address to an Ethernet address, and explain how each field contributes to the address resolution process.	CO1	PO1	10
	b)	Apply your understanding of the BGP protocol to explain how it establishes and maintains routing paths between different autonomous systems, using diagrams to support your explanation.	CO3	PO2	10
			UNIT - II		
3	a)	Describe with TCP header format along with flags which are used to establish and terminate a TCP connection	CO2	PO1	10
	b)	Discuss the reasons causing silly window syndrome and how Nagle's algorithm is used to avoid the same	CO2	PO1	10
			OR		

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	4	a)	With a neat state transition diagram explain TCP connection establishment and termination.	CO2	PO1	10
		b)	Illustrate the basic algorithm for adaptive re-transmission and how karn's algorithm provides a solution for calculating the timeout.	CO2	PO1	10
			UNIT - III			
	5	a)	Compare the two congestion control algorithms AIMD and slow start and discuss how these algorithms work together	CO3	PO2	10
		b)	With a sequence diagram explain how duplicate acknowledgements lead to a fast re-transmit	CO2	PO1	10
			OR			
	6	a)	Analyze the two congestion avoidance mechanisms by explaining their operation and effectiveness. Evaluate the role of the router in detecting, controlling, and mitigating network congestion, and illustrate how these strategies are implemented in practice.	CO3	PO2	10
		b)	Illustrate FIFO and fair queuing for handling traffic from different flows	CO2	PO1	10
			UNIT - IV			
	7	a)	Identify and describe the key SNMP protocol operations used for querying agents in a network management system. Provide examples to illustrate each operation.	CO3	PO2	10
		b)	With a neat diagram discuss internet standard management framework	CO1	PO1	10
			OR			
	8	a)	What are MIB objects list its types and explain the tree structure of a Management Information Base (MIB) with an example? Additionally, illustrate the syntax of a MIB object using a specific example.	CO1	PO1	10
		b)	Identify and describe the primitive and constructed data types used in ASN.1. Explain their purposes and provide examples for each type	CO3	PO2	10
			UNIT - V			
	9	a)	Explain the high-level architecture of UMTS and GSM with a diagram	CO1	PO1	10
		b)	Analyze how a mobile phone uses soft handoff, leveraging the frequency reuse principle, to maintain call integrity when moving across cell boundaries	CO3	PO2	10
			OR			
	10	a)	With a neat diagram illustrate system architecture evolution of LTE	CO1	PO1	10
		b)	Demonstrate the communication protocols used by the internet showing their mapping on to the layers of OSI model	CO3	PO2	10
