

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: CSE (IoT & Cybersecurity including Blockchain)

Duration: 3 hrs.

Course Code: 23IC5PCCRP

Max Marks: 100

Course: CRYPTOGRAPHY

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Distinguish between passive and active security attacks. List and explain passive and active attacks with examples.			<i>CO1</i>	<i>PO2</i>	05
		b)	Describe transposition ciphers. Apply transposition ciphers to encrypt the message "SECURITY" using a columnar transposition cipher with key 31254. Find the decryption key.			<i>CO1</i>	<i>PO1</i>	07
		c)	Encrypt the message "attack" using the Hill cipher with the key matrix $\begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix}$. Show the steps of encryption.			<i>CO1</i>	<i>PO1</i>	08
			OR					
	2	a)	Use Vigenere Cipher with key HEALTH to encrypt the message "Life is full of surprises"			<i>CO1</i>	<i>PO1</i>	06
		b)	Use the extended Euclidean algorithm to find the inverse of $(x^4 + x^3 + 1)$ in $GF(2^5)$ using the modulus $(x^5 + x^2 + 1)$.			<i>CO1</i>	<i>PO1</i>	08
		c)	Find all subgroups and cyclic generators of $G = \langle Z_{11}^*, \times \rangle$.			<i>CO1</i>	<i>PO1</i>	06
			UNIT - II					
	3	a)	If a message of 3000 characters is encrypted using a block cipher with a 64-bit block size, determine: i) The total number of blocks required. ii) The amount of padding added when padding is done to the nearest block boundary. iii) How many substitution and permutation operations are performed in a cipher using 10 rounds of a substitution-permutation network, assuming each round has 4 mixers and 2 swappers?			<i>CO2</i>	<i>PO2</i>	06

	b)	Distinguish between modern symmetric-key ciphers and traditional symmetric-key ciphers based on their schemes, strengths and weaknesses, and performance with examples.	CO2	PO2	08
	c)	Demonstrate with a neat diagram the key generation process in DES.	CO1	PO1	06
		OR			
4	a)	Write the pseudocode for the Shiftrows, InvSubBytes transformation in AES.	CO1	PO1	06
	b)	AES supports three different numbers of rounds (10, 12, and 14) based on key size, while Triple DES uses a fixed 16 rounds applied three times. Compare the advantages and disadvantages of AES over Triple DES with respect to the number of rounds. How does this difference affect security, performance, and compatibility?	CO2	PO2	08
	c)	Design and demonstrate an encryption and decryption system using the Output Feedback (OFB) mode of AES.	CO3	PO3	06
		UNIT - III			
5	a)	Find the values of the following Euler's Totient Function: (a) $\phi(17)$ (b) $\phi(36)$ (c) $\phi(72)$	CO1	PO1	06
	b)	Solve the following problems using Fermat's Little Theorem: a) $7^{25} \pmod{13}$ b) $23^{56} \pmod{19}$	CO1	PO1	06
	c)	Determine whether the integers 73 and 103 pass the Miller-Rabin primality test using base 2. Show all steps and calculations.	CO1	PO1	08
		OR			
6	a)	Apply CRT to find the integer x which leave a remainder of 6, 13, 9 and 19 when divided by 11, 16, 21 and 25 respectively.	CO1	PO1	10
	b)	Explain the concepts of Quadratic Residues (QRs) and Quadratic Non-Residues (QNRs) .Find QN and QNR for Z_{11}^* .	CO1	PO1	10
		UNIT - IV			
7	a)	Differentiate between symmetric-key and asymmetric-key cryptosystems with suitable examples.	CO2	PO2	05
	b)	Find d and Perform Encryption and Decryption using RSA algorithm with $p=3$, $q=11$, $e=7$ and Message=5.	CO1	PO1	07

		c)	Alice uses Bob's RSA public key ($e = 3$, $n = 35$) and sends the ciphertext 22 to Bob. Show how Eve can find the plaintext using the cycling attack.	CO2	PO2	08
			OR			
	8	a)	In ElGamal, given the prime $p = 31$: a. Choose an appropriate e_1 and d , then calculate e_2 . b. Encrypt the following messages "H", "E", "L"; use 00 to 25 for encoding.	CO1	PO1	08
		b)	Consider an elliptic curve $E_{11}(1,1)$ over a finite field 11 , the generator Point G is $G = (6,6)$. Bob choose the private value $n = 2$. 1) Find the equation of the curve. 2) Find at least five points on the curve 3) find the Public Key of Bob over elliptic Curve $P_b = n G$.	CO1	PO1	12
			UNIT - V			
	9	a)	Identify and explain the types of attacks on digital signatures. provide a specific example scenario that illustrates how the above attack could be carried out on digital signatures.	CO2	PO2	10
		b)	Explain the HMAC construction process with neat diagram.	CO1	PO1	10
			OR			
	10	a)	Demonstrate the steps of Kerberos authentication protocol with the help of a neat diagram.	CO1	PO1	06
		b)	In the Diffie-Hellman protocol, $g = 7$, $p = 23$, $x = 3$, and $y = 5$. a. Solve the value of the symmetric key? b. Solve the value of $R1$ and $R2$?	CO1	PO1	06
		c)	Create a neat diagram that clearly illustrates the structure of an X.509 certificate. Label each part of the certificate and briefly describe its purpose.	CO1	PO1	08
