

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2023 Semester End Make-Up Examinations

Programme: B.E.

Semester: I

Branch: Common to All Branches

Duration: 3 hrs.

Course Code: 22CS1ESICP

Max Marks: 100

Course: Introduction to C-Programming

Date: 14.08.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Discuss the rules to be followed for naming an identifier, such as a variable, in C. 4

b) Convert the following equations into equivalent C-programming statements. (Use of minimum number of characters is preferred). 8

(i)
$$p = a + \frac{b}{cx+d} - \left(\frac{f^2}{gx+h} \right) \frac{k}{l}$$

(ii)
$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

(iii)
$$y = e^{-xt} \left[\cosine \left(\frac{\pi x}{a} \right) \right] (1 + x)^n$$

(iv)
$$result = x > y ? 1 : 0$$
 (into equivalent if-else statement)

c) Write a program to read the coefficients of the quadratic equation $ax^2 + bx + c = 0$, compute and print the roots of the equation. The program must check for nature of roots (real/imaginary) and output the roots with suitable messages. 8

UNIT - II

2 a) Differentiate *while* and *do-while* constructs writing their syntax. 6

b) A prime number is a positive integer that is divisible by 1 and itself. Write a program to generate first 100 prime numbers. 8

c) Write the output of the following program. 6

```
#include<stdio.h>
void main()
{
    int i, j, x = 0;
    for (i=0; i<5; ++i)
        for(j=0; j<i; j++)
    {
        x += (i + j - 1);
        printf("%d\n", x);
        break;
    }
    printf("x = %d", x);
}
```

UNIT - III

3 a) A set of n integer numbers in descending order is given as input to a program. Write the source code (C-program) to read these numbers and search for a key element using binary search. The program must output suitable messages and identify the position of the element, if found. 10

b) Two matrices A and B of order $m \times n$ are to be read as input. Write a program to read these two matrices. Compute and output the following: matrix A , matrix B , $A + B$, $A - B$, transpose of $(A + B)$. 10

UNIT - IV

4 a) Write a program that would satisfy following conditions: 10

- (i) Define two global integer variables x and y ; two local integer variables a and b . (Use of additional variables is permitted).
- (ii) Read values of x , y , a , and b in the main program; output their values before swapping.
- (iii) Swap values of x and y (using a function with call by value).
- (iv) Swap values of a and b (using another function with call by reference).
- (v) Output the final values of four variables in the main function.

b) Write a program to read two strings, concatenate the strings (second string appended to first string without the use of built-in function) and output the two strings. 10

OR

5 a) Write a user-defined function to compute factorial of a given integer. Use this function in the main program that reads n and r as integer input, computes ${}^n P_r$ and ${}^n C_r$ using the function and output the computed values in suitable format. 10

Note: ${}^n P_r = \frac{n!}{(n-r)!}$; ${}^n C_r = \frac{n!}{(n-r)! r!}$

b) Write a program to read a string, reverse the given string without use of built-in function, and check whether it is a palindrome. 10

UNIT - V

6 a) Write the syntax of structure definition and structure declaration and explain them with an example to store employee details by having structure members: emp-id, emp-name, salary and display the same. 10

b) Write the output of the following program. You are required to justify the output through proper description for each output statement. 10

```

#include<stdio.h>
void function1(int u, int v);
void function2(int *pu, int *pv);
void main()
{
    int u=1, v=2;
    printf("Before calling function1: u = %d, v = %d",u,v);
    function1(u,v);
    printf("\nAfter calling function1: u = %d, v = %d",u,v);

    printf("\nBefore calling function2: u = %d, v = %d",u,v);
    function2(&u,&v);
    printf("\nAfter calling function2: u = %d, v = %d",u,v);
}
void function1(int u, int v)
{
    u = 0; v = 0;
    printf("\nWithin function1: u = %d, v = %d",u,v);
    return;
}
void function2(int *pu, int *pv)
{
    *pu = 3; *pv = 4;
    printf("\nWithin function2: *pu = %d, *pv = %d",*pu,*pv);
    return;
}

```

OR

7 a) Define a structure called *cricket* that will describe the following information: 10
 player_name, team_name, batting_average.
 Using *cricket*, declare an array *player* with 50 elements and write a program to
 read the information about all the 50 players and print a list containing names
 of players with their batting average.

b) Write a function using pointers to exchange the values stored in two locations 10
 in the memory. Use this function in a main program that reads two variables
 and exchanges their values. The program must output the original values and
 final values with suitable messages.
