

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Program: B.E.

Semester: III

Branch: Computer Science and Engineering

Duration: 3 hrs.

Course Code: 19CS3PCCOA

Max Marks: 100

Course: Computer Organization and Architecture

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - III					
4	a)	Analyze the working of DMA controller with a neat diagram. Also explain Direct Memory Access operation indicating the status and control bits.	<i>CO3</i>	<i>PO3</i>	10
	b)	Design and explain a memory of size 8M x 32 using 512K x 8 memory chips.	<i>CO3</i>	<i>PO3</i>	10
OR					
5	a)	Explain Direct-mapped cache with an example. A cache is organized in the direct-mapped manner with the following parameters: Main memory size 128K words Cache size 2K words Block size 256 words i. How many bits are there in a main memory address? ii. How many bits are there in each of the TAG, BLOCK and WORD fields? Write the main memory address diagram indicating the above 3 fields	<i>CO3</i>	<i>PO3</i>	10
	b)	Analyze with a neat diagram, the use of an Associative-mapped translation lookaside buffer in Virtual memory.	<i>CO3</i>	<i>PO2</i>	10
UNIT - IV					
6	a)	Assuming 6-bit 2's-complement number representation, multiply the multiplicand A = -23 by the multiplier B = 16 using the Bit-Pair Recoding algorithm. Show the solving steps completely and clearly.	<i>CO3</i>	<i>PO3</i>	10
	b)	Using non-restoring division algorithm, divide 8 by 3. Show by solving steps completely and clearly.	<i>CO3</i>	<i>PO3</i>	10
UNIT - V					
7	a)	Considering five-stage Datapath in a processor, write Sequence of actions needed to fetch and execute each of the following instructions: i. Subtract R1, R2, R3 ii. Store R4, X(R5) iii. Conditional branch instruction Branch_if_[R6]>=[R7] LOOP	<i>CO3</i>	<i>PO3</i>	10
	b)	Explain Flynn's Taxonomy Classification according to important characteristics of a parallel computer with neat diagrams	<i>CO3</i>	<i>PO2</i>	10
