

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 23CS3ESCOA

Course: Computer Organization & Architecture

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Represent 65 and -85 using sign magnitude, 1's complement and 2's complement representation. Use 8-bit representation.	CO1	PO 1	6
	b)	With a neat diagram explain basic functional units of a computer	CO1	PO1	6
	c)	Define addressing modes. Explain any six addressing modes with examples.	CO1	PO1	8
UNIT - II					
2	a)	Define assembler directives. Explain any five assembler directives with examples.	CO1	PO1	6
	b)	Design an assembly language program to find sum of N numbers starting at NUM1 and store result in SUM.	CO3	PO3	6
	c)	Define interrupt. List the sequence of events that occur when an interrupt comes from a device.	CO1	PO1	8
UNIT - III					
3	a)	With a neat diagram explain memory hierarchy used in computer.	CO1	PO1	6
	b)	With a neat diagram, explain how virtual memory address is converted into physical address.	CO1	PO1	6
	c)	With neat diagram explain direct memory mapping technique used to map main memory to cache memory. Assume main memory of 128KB, cache of 16KB and block size of 256 bytes. Memory is byte addressable. Apply direct mapping to find number of tag bits, block bits and word bits.	CO3	PO3	8
OR					
4	a)	With a neat diagram explain working of a SRAM cell.	CO1	PO1	6
	b)	With a neat diagram explain typical organization of 1K x 1 memory chip.	CO1	PO1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Design 2M x16 memory module using 512K x 8 memory modules.	CO3	PO3	8
		UNIT - IV			
5	a)	Multiply 23 (Multiplicand) and -10 (Multiplier) using Bit pair recoding technique.	CO1	PO1	6
	b)	Design 4-bit Ripple Carry Adder (RCA) using full adders. Calculate the number of gate delays for Sum and Carry signal generation. Show the design with neat and complete diagram.	CO3	PO3	8
	c)	Explain with neat diagram Single precision and double precision representation of floating-point numbers with an example.	CO1	PO1	6
		OR			
6	a)	Multiply 23 (Multiplicand) and -10 (Multiplier) using Booth's multiplication.	CO1	PO1	6
	b)	Write algorithm for non-restoring division algorithm and explain the same with an example.	CO1	PO1	6
	c)	Design 4-bit carry lookahead adder. Calculate the number of gate delays for Sum and Carry signal generation. Show the design with neat and complete diagram.	CO3, 2	PO3, 2	8
		UNIT - V			
7	a)	With a neat diagram explain NUMA architecture in shared memory multiprocessor systems.	CO1	PO1	6
	b)	Write Sequence of actions needed to fetch and execute the instruction: Add R3, R4, R5.	CO1	PO1	6
	c)	With a neat diagram explain hardwired control unit design.	CO1	PO1	8
