

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## September / October 2024 Supplementary Examinations

**Programme: B.E.**

**Branch: Computer Science and Engineering**

**Course Code: 22CS3PCDST**

**Course: Data Structures**

**Semester: 3**

**Duration: 3 hrs.**

**Max Marks: 100**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| <b>UNIT - I</b> |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>CO</b>  | <b>PO</b>  | <b>Marks</b> |
|-----------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------|
| 1               | a) | Differentiate between linear and non-linear data structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>CO2</i> | <i>PO2</i> | <b>4</b>     |
|                 | b) | Convert the following Infix expression to Postfix expression using Stacks:<br>$K + L - M^N + (O^P) * W/U/V * T + Q$<br>Show the contents of the stack at the end of each step. Also, write the pseudocode for the same.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>CO3</i> | <i>PO3</i> | <b>10</b>    |
|                 | c) | Analyse the code given below and show the function call tracing for num=26.<br><br><pre>#include &lt;stdio.h&gt; int number (int, int); int main () {     int num, check;     printf ("Enter a number: ");     scanf ("%d", &amp;num);     check = number (num, num / 2);     if (check == 1)     {         printf ("%d is a prime number\n", num);     }     else     {         printf ("%d is not a prime number\n", num);     }     return 0; } int number (int num, int i) {     if (i == 1)     {         return 1;     }     else     {         if (num % i == 0)         {             return 0;         }         else         {             return number (num, i - 1);         }     } }</pre> | <i>CO2</i> | <i>PO2</i> | <b>6</b>     |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

|                   |    |                                                                                                                                                                                       |     |     |           |
|-------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|                   |    | <pre>     }     else     {         if (num % i == 0)         {             return 0;         }         else         {             return number(num, i - 1);         }     } } </pre> |     |     |           |
| <b>UNIT - II</b>  |    |                                                                                                                                                                                       |     |     |           |
| 2                 | a) | Write a C program that dynamically allocates memory for an array of integers. Allow the user to input the size of the array and elements and then print the array.                    | CO3 | PO3 | <b>6</b>  |
|                   | b) | Demonstrate the operation of different types of double ended queue using arrays.                                                                                                      | CO3 | PO3 | <b>10</b> |
|                   | c) | List the advantages and disadvantages of the structures.                                                                                                                              | CO1 | PO1 | <b>4</b>  |
| <b>UNIT - III</b> |    |                                                                                                                                                                                       |     |     |           |
| 3                 | a) | Implement a C program to create n node using single linked list and find the middle number of the linked list.                                                                        | CO3 | PO3 | <b>10</b> |
|                   | b) | Write a C program to implement queue using stack.                                                                                                                                     | CO3 | PO3 | <b>10</b> |
| <b>OR</b>         |    |                                                                                                                                                                                       |     |     |           |
| 4                 | a) | Demonstrate the working of circular linked list with all operations. List its advantages and disadvantages.                                                                           | CO3 | PO3 | <b>10</b> |
|                   | b) | Write a C program to implement polynomial addition using linked list.                                                                                                                 | CO3 | PO3 | <b>10</b> |
| <b>UNIT - IV</b>  |    |                                                                                                                                                                                       |     |     |           |
| 5                 | a) | Write a C program to check if a Binary Tree is Binary Search Tree or not.                                                                                                             | CO3 | PO3 | <b>10</b> |

|   |    |                                                                                                                                                                                                               |     |     |    |
|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
|   | b) | For the tree below, write the in-order,pre-order,post order traversal                                                                                                                                         | CO2 | PO2 | 6  |
|   | c) |                                                                                                                                                                                                               | CO1 | PO1 | 4  |
|   |    | <b>OR</b>                                                                                                                                                                                                     |     |     |    |
| 6 | a) | Write a C program to implement deletion operations for all cases in the binary tree.                                                                                                                          | CO3 | PO3 | 10 |
|   | b) | <p>Show how a Binary Search Tree is created using the following elements in sequence.<br/> <b>47, 12, 75, 88, 90, 73, 57, 1, 85, 50, 62</b><br/> Also, write a C function to create a Binary Search Tree.</p> | CO2 | PO2 | 10 |
|   |    | <b>UNIT - V</b>                                                                                                                                                                                               |     |     |    |
| 7 | a) | Using separate chaining construct the hash table with key size=6 for the following elements 22,45,36,78,88,167                                                                                                | CO2 | PO2 | 6  |
|   | b) | Write a C program to implement hashing technique using linear probing.                                                                                                                                        | CO3 | PO3 | 10 |
|   | c) | Difference between separate chaining and open addressing.                                                                                                                                                     | CO2 | PO2 | 4  |

\*\*\*\*\*