

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

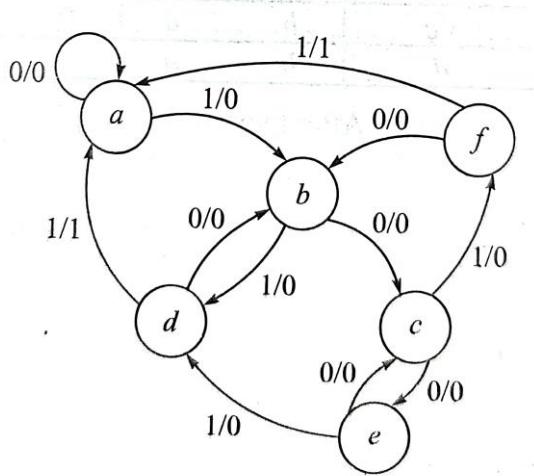
Programme: B.E.

Semester: III

Branch: Computer Science and Engineering

Duration: 3 hrs.

Course Code: 19CS3PCLOD


Max Marks: 100

Course: Logic Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks																																				
2 Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Using Quine McClusky method obtain the essential prime implicants for the expression given below: $f(w,x,y,z) = \sum m(1,2,3,5,9,12,14,15) + d_c(4,8,11)$	CO1	PO1	10																																					
		b)	Express the following functions by minterm canonical formula and construct the corresponding truth table $f(X,Y,Z) = X'(Y'+Z) + Z'$	CO2	PO2	05																																					
		c)	Analyze the following truth table. Express it in the form of SOP. Give the relevant logic diagram	CO2	PO2	05																																					
			<table border="1"> <tr><td>X</td><td>Y</td><td>Z</td><td>F</td></tr> <tr><td>0</td><td>0</td><td>0</td><td>1</td></tr> <tr><td>0</td><td>0</td><td>1</td><td>1</td></tr> <tr><td>0</td><td>1</td><td>0</td><td>1</td></tr> <tr><td>0</td><td>1</td><td>1</td><td>0</td></tr> <tr><td>1</td><td>0</td><td>0</td><td>1</td></tr> <tr><td>1</td><td>0</td><td>1</td><td>0</td></tr> <tr><td>1</td><td>1</td><td>0</td><td>1</td></tr> <tr><td>1</td><td>1</td><td>1</td><td>1</td></tr> </table>	X	Y	Z	F	0	0	0	1	0	0	1	1	0	1	0	1	0	1	1	0	1	0	0	1	1	0	1	0	1	1	0	1	1	1	1	1				
X	Y	Z	F																																								
0	0	0	1																																								
0	0	1	1																																								
0	1	0	1																																								
0	1	1	0																																								
1	0	0	1																																								
1	0	1	0																																								
1	1	0	1																																								
1	1	1	1																																								
			OR																																								
	2	a)	Analyze the following the following scenario: There are 3 inputs x,y,z and 3 outputs a,b,c. When the binary input is 0,1,2,3 the binary output is one greater than the respective input. When binary input is 4,5,6,7 the binary output is one less than the respective binary input. Outline a truth table for this problem and design a simple circuit diagram using separate k maps for each output.	CO2	PO2	10																																					
		b)	Express AND, OR and NAND using NOR gate only.	CO3	PO3	06																																					
		c)	Write down all the minimal sums of the following Boolean functions using Karnaugh maps $f(a,b,c,d) = \sum m(3,4,6,9,11,12,13,14,15)$	CO1	PO1	04																																					

UNIT - II					
3	a)	Design with help of truth table and k-maps 2 bit magnitude comparator	CO3	PO3	08
	b)	Realize each of the following Boolean expressions using a) an 8-to-1 line multiplexer where w,x, and y appear on select lines S2, S1 and S0 respectively b) an 4 to 1 mux where w and x appear on the select line $f(w,x,y,x)=\sum m(1,2,6,7,9,11,12,14,15)$	CO1	PO1	08
	c)	Design the following functions using PLA with 3 inputs, 3 product terms, 2 output. $f1(a,b,c)=\sum m(4,5,7)$ $f2(a,b,c)=\sum m(3,5,7)$	CO1	PO1	04
UNIT - III					
4	a)	With a neat diagram outline SISO - Serial IN serial Out register. Also give the timing diagram.	CO2	PO2	06
	b)	Derive the excitation table, characteristic equation and state transition diagram of JK and SR Flip flop.	CO2	PO2	10
	c)	What is bi-stable element. Illustrate how does it succeed in storing 1 bit data using suitable diagram	CO2	PO2	04
OR					
5	a)	Illustrate master slave flip flop. Highlight why M.S flip flop is required.	CO2	PO2	08
	b)	Demonstrate the working of serial-in, parallel-out 4-bit shift register with the help of a neat diagram.	CO2	PO2	06
	c)	Explain the working of negative edge triggered SR flip flop with the help of a neat diagram. Also, demonstrate the timing diagram for the same.	CO2	PO2	06
UNIT - IV					
6	a)	Design 3-bit Ripple down counter. Give the timing diagram	CO3	PO3	08
	b)	Outline the difference between synchronous and asynchronous counter	CO1	PO1	04
	c)	Design a self-correcting modulo-6 synchronous counter in which all unused state leads to state CBA=000 using JK Flip-flop.	CO3	PO3	08
UNIT - V					
7	a)	Design a synchronous logic circuit using Moore model that detects a sequence 101 from an input data stream X and signals detection by making output Z=1, which otherwise is 0. Realize a circuit using JK flip flop.	CO2	PO2	10
	b)	What is Algorithmic state machine? List any 2 advantages of ASM.	CO1	PO1	02
	c)	Apply state reduction technique for the following	CO1	PO1	08

CS Scanned with CamScanner
