

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

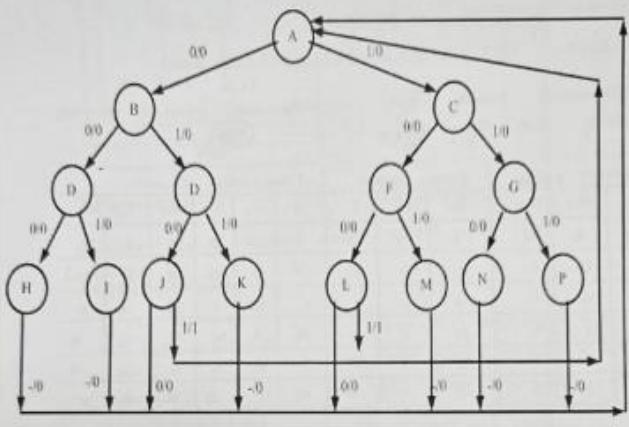
Semester: III

Branch: Computer Science and Engineering

Duration: 3 hrs.

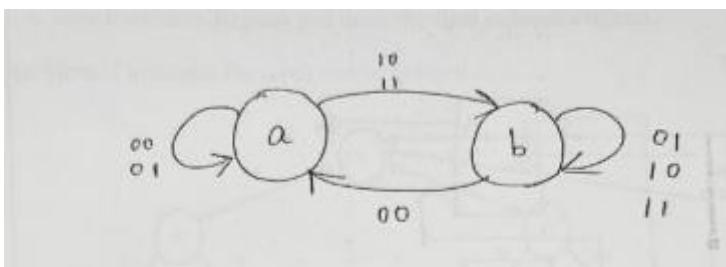
Course Code: 19CS3PCLOD

Max Marks: 100


Course: Logic Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	i) Write the expression in algebraic form for the given function: $f(w,x,y,z) = \sum m(4,8,10,14)$ ii) Realize the following using only NOR gates: $Y = (A+C)(B'+D')(A'+B'+C')$	CO1	PO 1	5
		b)	Analyze the given truth table. Reduce it to SOP and draw the logic diagram.	CO2	PO2	5
		c)	X Y Z f 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1	CO3	PO3	10
			OR			
	2	a)	Analyze the truth table given below for an OR gate using positive logic.	CO2	PO2	5
			A B Y 0 0 0 0 1 1 1 0 1 1 1 1			


		Represent the equivalent gate using negative logic. (Here, binary 0 stands for high value and binary 1 stands for low value).			
	b)	Draw the K-map for the Boolean expression below and simplify to obtain minimal POS: $f(x,y,w,z) = \prod m(0,1,4,5,8,9,11) + \text{dc}(2,10)$ Draw the logic diagram for the above simplified expressions.	CO2	PO2	5
	c)	Using Quine McCluskey method obtain the prime implicants for the expression given below: $f(a,b,c,d) = \sum m(3,4,5,7,10,12,14,15) + \text{dc}(2)$.	CO3	PO3	10
UNIT - II					
3	a)	Design a serial adder to add 2 four-bit numbers and explain how sum and carry are generated.	CO3	PO3	8
	b)	Design the following functions using a 3*4*2 PLA. $f1(a,b,c) = \sum m(1,2,3,6)$ $f2(a,b,c) = \sum m(0,1,3,6,7)$	CO3	PO3	8
	c)	Design a 8:1 MUX using 4:1 MUX.	CO3	PO3	4
OR					
4	a)	i) Using appropriate decoder and OR gate realize the following Boolean expression $f1(a,b,c) = \sum m(0,4,6)$ $f2(a,b,c) = \sum m(0,5)$ $f3(a,b,c) = \sum m(1,2,3,7)$ ii) With help of a truth table and circuit diagram show the design of a 1:8 De-Mux.	CO3	PO3	10
	b)	Using the 4 input-3 output PAL implement the functions $f1(a,b,c) = \sum m(0,3,5,6,7)$ $f2(a,b,c) = \sum m(1,2,3,5,7)$	CO3	PO3	10
UNIT - III					
5	a)	Design a JK flip flop using SR flip flop. Represent the SR flip flop as well as JK flip flop using state transition diagram. Also, from the state transition diagram, design the excitation table.	CO3	PO3	10
	b)	Design a circuit diagram for an 8-bit sequence detector using one shift register and one comparator which has to detect a fixed pattern 10011110 from incoming binary data stream.	CO3	PO3	10
OR					
6	a)	A Johnson counter designed using a N-bit shift register has 2^N states. When $N=4$, we design a switched tail-counter with 8 (clock	CO3	PO3	10

		pulse) states. Assume the start state as 1101. Represent the truth table and also the logic diagram for the same.			
	b)	Differentiate between the sequential circuits and combinational circuits.	CO2	PO2	5
	c)	Explain the SR latch debounce circuit.	CO2	PO2	5
UNIT - IV					
7	a)	Define counter. Outline the differences between synchronous counter and asynchronous counter.	CO2	PO2	6
	b)	Explain binary ripple counter, with its block and timing diagrams.	CO3	PO3	8
	c)	Write the timing diagram for 3 bit up-down counter.	CO2	PO2	6
OR					
8	a)	Design a synchronous mod-6 counter using clocked D flip flops.	CO3	PO3	10
	b)	Design a synchronous up counter using JK flip flop for the sequence 2,3,7,5,6,4.	CO3	PO3	10
UNIT - V					
9	a)	Explain the problem of oscillation in Asynchronous Sequential Circuit with an example.	CO3	PO3	5
	<pre> graph LR S0((S0/0)) -- 1 --> S1((S1/0)) S1 -- 0 --> S2((S2/0)) S2 -- 0 --> S3((S3/1)) S3 -- 1 --> S0 S0 -- 1 --> S3 S1 -- 0 --> S0 S2 -- 1 --> S1 </pre>				
	b)	For the given Moore model below, illustrate the ASM chart:	CO2	PO2	5
	<pre> graph LR a((a(0))) -- 0 --> a a -- 1 --> b((b(0))) b -- 0 --> a b -- 1 --> b b -- 1 --> c((c(0))) c -- 0 --> b c -- 1 --> c c -- 0 --> d((d(1))) d -- 0 --> c d -- 1 --> d </pre>				
	c)	Apply State Reduction technique and eliminate the redundant states in the below state transition diagram and draw the final reduced diagram.	CO3	PO3	10

OR

10 a) Analyze the State Transition diagram given below and draw the equivalent ASM chart for the same.

CO2 PO2 **5**

b) Provide the reduced state transition diagram using implication table method for the following graph:

Co3 Po3 **10**

c) Analyze the mealy model asynchronous sequential circuit for NAND gate. Construct the truth table for various cases.

CO2 PO2 **5**
