

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science And Engineering

Course Code: 19CS3PCLOD

Course: Logic Design

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 19.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may suitably assumed.

UNIT - I

1 a) Prove the following: 6

i) $x'y'z' + x'y'z + x'yz + xy'z + xyz = x'y' + z$

ii) $w'y'z' + wz + y'z + xyz = w'y' + wz + xz$

b) Simplify and Realize the following Boolean function using NAND gates only. 6

$f(a,b,c,d) = \sum m(0, 6, 8, 9, 10, 11, 13, 14, 15)$

c) Simplify the following function using K-Map in SOP and POS form. 8

$f(w,x,y,z) = \sum m(1,3,4,5,6,7,11,14,15)$

OR

2 a) Using Quine McClusky method obtain the essential prime implicants for the expression given and also write the simplified expression for the same 10

$f(w,x,y,z) = \sum m(1,3,5,6,7,13,14) + dc(8,10,12)$

b) Simplify the expression given below using K-maps and realize the simplified expression using basic gates: 6

$f(a,b,c,d) = \sum m(2,4,6,9,11,15) + dc(5,10,13,14)$

c) What is static 0 hazard and how it can be eliminated? 4

UNIT - II

3 a) Analyse the truth table given below for a Boolean function where A, B, C are the 3 input variables and X, Y are the output variables. Here, input A has higher priority than input B and input B has higher priority than input C. The circuit also has Enable as the input. Implement the function using basic gates. 6

Input				Output	
Enable	A	B	C	X	Y
0	X	X	X	0	0
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	X	1	0
1	1	X	X	1	1

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
 Revealing of identification, appeal to evaluator will be treated as malpractice.

b) Realize the given 4-variable expression using 8-to-1 multiplexer as well as 4-to-1 multiplexer. 8
 $f(w,x,y,z) = \sum(2,5,6,7,9,12,13,15)$

c) Using OR and/or NOR gates along with 3-to-8 decoder to implement the following functions. The gates should be selected so as to minimize the number of inputs. 6

i) $f_1(x,y,z) = \Pi M(1,2,5)$
 $f_2(x,y,z) = \Pi M(0,1,3,5,7)$

ii) $f_1(x,y,z) = \sum m(1,3)$
 $f_2(x,y,z) = \sum m(1,2,4,5,7)$

Assume all the 8 output lines of the decoder are active high signals.

UNIT - III

4 a) Explain the working of positive edge triggered JK flip flop with the help of a neat diagram. Also, demonstrate the timing diagram for the same 8

b) Derive the characteristic equations for 8

- i) SR Flip Flop
- ii) D Flip Flop
- iii) JK Flip Flop
- iv) T Flip Flop

Also represent all the above flip flops using state transition diagram.

c) Differentiate Ring Counter and switched tail counter. 4

OR

5 a) Demonstrate the working of serial-in, serial-out 4-bit shift register with the help of a neat diagram. 6

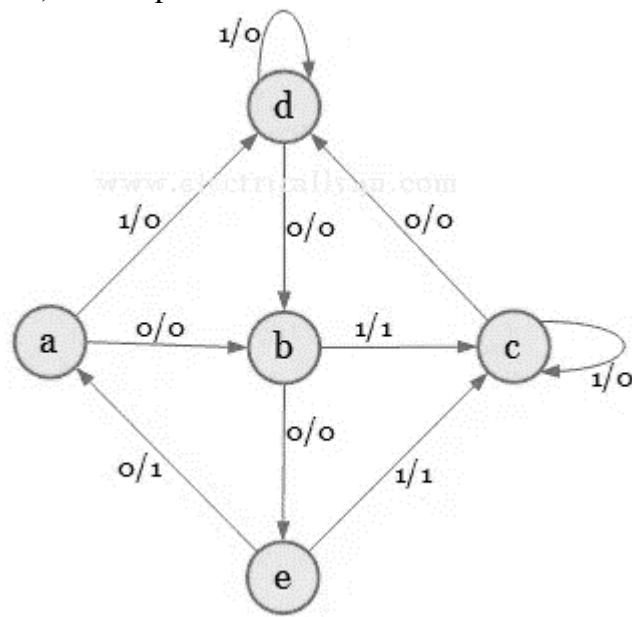
b) Design a 4 bit sequence detector using D Flip Flop to detect a pattern '1010' in the input sequence. 8

c) With a neat diagram explain the working of SR Flip Flop realized using NAND gates. 6

UNIT - IV

6 a) Design a 3 bit asynchronous up- down counter using JK Flip Flop. 8

b) Design a synchronous mod-6 counter using JK flip-flops for the following counting sequence: 000, 010, 011, 110, 101, 001 and then back to 000 12


UNIT - V

7 a) Design a synchronous sequential circuit using Moore Model for the sequence detector to detect 3 or more consecutive 1's in the given sequence. 8

b) Obtain the reduced state table for the state diagram given below using

8

- i) Row elimination method
- ii) Implication table method

c) Differentiate Moore model and Mealy model.

4
