

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June / July 2024 Semester End Make-Up Examinations

Programme: B.E.

Branch: Computer Science & Engineering

Course Code: 23CS3PCLOD

Course: Logic Design

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - II					
3	a)	Describe combinational circuits? Give the design for 2-bit comparators with relevant truth table and K maps.	CO2	PO2	8
	b)	Realize the given 4-variable expression using $f(a,b,c,d) = \sum m(4,5,7,9,11,12,13,15)$ i) An 8-to-1 line multiplexer choosing a,b,c as select lines ii) An 4-to-1 line multiplexer where a and b are select lines.	CO3	PO3	8
	c)	Briefly explain encoder and decoder.	CO1	PO1	4
UNIT - III					
4	a)	Describe Programmable logic devices and provide the general structure. Realize the following Boolean expressions using a PROM. (i) $f1(a,b,c) = \sum m(0,1,2,5,7)$ (ii) $f2(a,b,c) = \sum m(1,2,4,6)$	CO3	PO3	8
	b)	Design the following using 3*4*2 PLA. $f1(a,b,c) = \sum m(0,1,3,5) \quad f2(a,b,c) = \sum m(3,5,7)$	CO3	PO3	8
	c)	Outline the Differences between the three programmable logic devices.	CO3	PO3	4
UNIT - IV					
5	a)	Explain undefined or forbidden state in SR flip-flop	CO1	PO1	5
	b)	Compare the working of SR flip flops and JK flip flops using timing diagram.	CO3	PO3	10
	c)	Describe the Behavior and characteristics of D and JK flip flops using appropriate equations.	CO2	PO2	5
UNIT - V					
6	a)	Demonstrate the working of binary ripple counter with timing diagram? Explain its disadvantages	CO3	PO3	5
	b)	Describe the steps to design a 3-bit Synchronous Counter using JK Flip-Flops	CO2	PO2	10
	c)	Explain Mealy and Moore model with any simple example	CO2	PO2	5
OR					
7	a)	Design a sequence detector using Moore model that searches for a series of binary input to satisfy the pattern $01[0^*]1$, where $[0^*]$ is any number of 0's. The output (Z) should become true every time the sequence is found.	CO2	PO2	10
	b)	Design a self-correcting modulo-6 synchronous counter in which all unused state leads to state CBA=000 using JK Flip-flop.	CO3	PO3	10