

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Computer Science and Engineering

Duration: 3 hrs.

Course Code: 23CS3PCLOD / 22CS3PCLOD

Max Marks: 100

Course: Logic Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain Boolean expression and notations with examples								
		b)	Describe 4-variable K-maps? Sketch the Karnaugh map for the given example and find the final expression by solving K-maps i) $F(A, B, C, D) = \sum(0, 2, 5, 7, 8, 10, 13, 15)$ ii) $F(P, Q, R) = \pi(0,3,6,7)$			CO3	PO3	10			
		c)	Explain Product of Sum, minterms and Sum of Product in K-maps.								
			OR								
	2	a)	Explain the step involved in minimize a Boolean expression using Karnaugh Maps			CO1	PO1	5			
		b)	Using Karnaugh maps, determine all the minimal sum and minimal products for the following incomplete Boolean function $f(A, B, C, D) = \pi M(1,2,3,4,9,10) + \sum d(0,14,15)$								
		c)	List & explain the different steps of Quine-McCluskey method								
			UNIT - II								
	3	a)	Explain the working of 1-bit comparator and write the truth table and logic diagram for the same.			CO2	PO2	5			
		b)	Describe combinational circuits? Explain multiple bit comparators and its application								
		c)	Interpret the working of digital circuits used in digital systems for combining and separating multiple signals.								
			OR								
	4	a)	What is a multiplexer, and how does it differ from a demultiplexer?			CO3	PO3	5			
		b)	Describe the working of demultiplexer, and what are its primary applications?								

	c)	Compare and contrast a multiplexer and an encoder.	CO2	PO5	5
UNIT - III					
5	a)	Design PROM for the following Boolean functions $f1(x_2, x_1, x_0) = \sum m(0, 1, 2, 5, 6)$ $f2(x_2, x_1, x_0) = \sum m(1, 2, 4, 6)$	CO3	PO3	7
	b)	Using 4 input and 3-output PAL, implement the following functions $f1(a, b, c) = \sum m(0, 3, 5, 6, 7)$ and $f2(a, b, c) = \sum m(1, 2, 3, 5, 7)$.	CO3	PO3	8
	c)	Differentiate between programmable logic devices and Programmable Array Logic (PAL)	CO3	PO3	5
OR					
6	a)	Design PROM for the following Boolean function also write the truthtable. Here ' represents complement. $f1(a, b, c) = a'b'c' + ab'c + abc' + abc$ $f2(a, b, c) = abc' + a'bc + abc$	CO3	PO3	7
	b)	Design a PAL with 3 input and 2 output to implement the following Boolean functions $X(a, b, c) = \sum m(1, 2, 4, 6)$, $Y(a, b, c) = \sum m(0, 1, 3, 6, 7)$ and $Z(a, b, c) = \sum m(2, 4, 6)$	CO3	PO3	8
	c)	Why is PROM considered non-volatile memory? Discuss the underlying mechanism.	CO3	PO3	5
UNIT - IV					
7	a)	Explain undefined or forbidden state in SR flip-flop	CO1	PO2	5
	b)	Compare the working of SR flip flops and JK flip flops using timing diagram.	CO3	PO3	10
	c)	Describe the behavior and characteristics of D and JK flip flops.	CO2	PO2	5
OR					
8	a)	Explain latch and a flip-flop?	CO1	PO2	5
	b)	Differentiate between JK and T flip-flops?	CO3	PO3	10
	c)	Draw the excitation table for a T flip-flop and explain its significance.	CO2	PO2	5
UNIT - V					
9	a)	Demonstrate the working of binary ripple counter with timing diagram? Explain its disadvantages.	CO2	PO5	5
	b)	Describe the steps to design a 3-bit Synchronous Counter using JK Flip-Flops.	CO2	PO2	10
	c)	Mention the types of counters used in digital system? Explain the factors considered in choosing these counters?	CO1	PO1	5
OR					
10	a)	Explain how synchronous sequential circuits are implemented and its behaviors' are defined	CO2	PO2	5
	b)	Describe the key components of a state transition diagram for a synchronous sequential circuit.	CO1	PO1	10
	c)	Mention the advantages and disadvantages of synchronous sequential circuits over asynchronous.	CO2	PO2	5
