

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

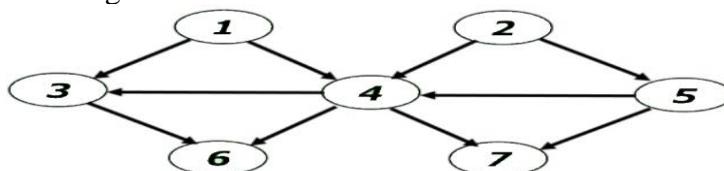
September / October 2024 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: Computer Science and Engineering

Duration: 3 hrs.


Course Code: 22CS4PCADA

Max Marks: 100

Course: Analysis and Design of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	<i>CO</i>	<i>PO</i>	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	With the help of flow chart, explain the various stages of algorithm design and analysis process.	<i>CO1</i>	<i>PO2</i>	8
		b)	Explain with formal definitions the various asymptotic notations.	<i>CO1</i>	<i>PO2</i>	6
		c)	Solve the following recurrence relation using backward Substitution method: $x(n)=x(n-1) + 1 \text{ for } n>1, x(1)=1$	<i>CO1</i>	<i>PO2</i>	6
			UNIT - II			
	2	a)	Determine the number of character comparisons made by the Brute-Force pattern matching algorithm in searching for the pattern “WOOD” in the text “TWO_ROADS_DIVERGED_IN_A_YELLOW_WOOD”. Also write an algorithm for the same and derive the best-case and worst-case time complexities.	<i>CO1</i>	<i>PO2</i>	10
		b)	Generate the no of permutation for the numbers 1 3 7 9 using Johnson trotter algorithm. Write the Algorithm	<i>CO2</i>	<i>PO1</i>	10
			OR			
	3	a)	Apply the partition-based algorithm to find the median of the following list of nine numbers: 4, 1, 10, 8, 7, 12, 9, 2, 15. Write the time complexity in the worst case.	<i>CO2</i>	<i>PO1</i>	10
		b)	Find the topological order for the following graph using DFS method and Source removal method by explaining source removal Algorithm	<i>CO2</i>	<i>PO1</i>	10
			UNIT - III			
	4	a)	Explain the central idea of Strassen’s matrix multiplication. Set up the recurrence formula to find the total number of multiplications	<i>CO2</i>	<i>PO1</i>	10

		required to perform Strassen multiplication. Compare this method with regular matrix multiplication.			
	b)	Explain the divide and conquer methodology. Apply quick sort to sort the following elements: 5,3,1,9,8,2,4,7. Derive the time complexity for the worst case in Quick sort.	CO2	PO1	10
		OR			
5	a)	Define heap. Give an algorithm to construct a heap for the given array by bottom up approach. Show bottom up heap construction step by step for the given list 2,9,7,6,5,8 and sort the heap.	CO2	PO1	10
	b)	Apply Horspool string matching algorithm for the pattern BARBER in the main string text “J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P”.	CO2	PO1	05
	c)	Design a Presorting -based algorithm to find the mode and determine its time efficiency.	CO2	PO1	05
		UNIT - IV			
6	a)	Apply Dynamic programming technique to solve coin row problem for the coins 5,1,2,10,6,2. Write the algorithm along with the recurrence equation and show the steps.	CO2	PO1	10
	b)	Write Dijkstra's algorithm to find single source shortest paths. Apply Dijkstra's algorithm to get shortest path from vertex 'a' to all other vertices.	CO2	PO1	10
		<pre> graph LR a((a)) --- c((c)) a --- b((b)) b --- d((d)) b --- e((e)) c --- d d --- e style a fill:#00ff00 style b fill:#00ff00 style c fill:#00ff00 style d fill:#00ff00 style e fill:#00ff00 </pre>			
		UNIT - V			
7	a)	Determine the vertex cover for the following graph. Write the steps and prove that how clique problem is reduced to vertex cover that satisfies NP Completeness.	CO3	PO1	8
	b)	Apply Backtracking for 4 Queens problem and draw state space tree to obtain the solution. Also write an algorithm for the same .	CO3	PO1	12
