

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

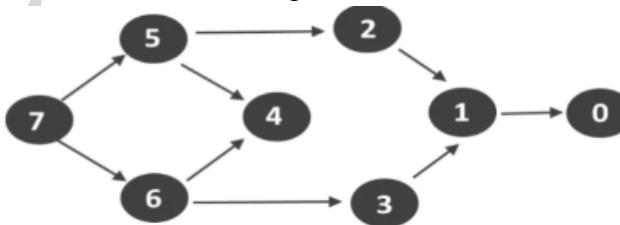
September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science & Engineering

Course Code: 22CS4PCADA

Course: Analysis and Design of Algorithms


Semester: IV

Duration: 3 hrs.

Max Marks: 100

Date: 22.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	<i>CO</i>	<i>PO</i>	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Describe Asymptotic notations with an example, equation and graph.	<i>CO1</i>	<i>PO1</i>	6
		b)	Design a recursive algorithm to find maximum and minimum element in an array and derive its time complexity.	<i>CO1</i>	<i>PO1,2,3</i>	8
		c)	Analyze the code given below and find the time complexity: void function (int n) { int count = 0; for (int i=n/2; i<=n; i++) for (int j=1; j<=n; j = 2 * j) for (int k=1; k<=n; k = k * 2) count++; } }	<i>CO1</i>	<i>PO2</i>	6
					UNIT - II	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Mention the applications of Depth First Search (DFS) algorithm. Apply DFS method to find the topological sequence for the graph shown below. Also write an algorithm for the same.	<i>CO2,4</i>	<i>PO1,2,3</i>	10
		b)	 Solve the following assignment problem using Exhaustive Search technique, whose matrix for assigning four jobs to four persons are given:	<i>CO2,4</i>	<i>PO1,2,3</i>	10

	J1	J2	J3	J4
Person A	3	21	7	9
Person B	18	13	10	15
Person C	29	19	17	12
Person D	32	30	26	28

		OR																			
3	a)	Demonstrate with an example Brute Force pattern matching technique. Write an algorithm for the same and find its time complexity.			CO2,4	PO1,2,3	10														
	b)	Write a program to check whether a particular given node is reachable from a given source node using DFS traversal technique. If yes, print “Node is accessible”, otherwise print “Node is not accessible”.			CO2	PO1	10														
		UNIT - III																			
4	a)	Apply Merge sort to sort the list {E, X, A, M, P, L, E} in alphabetical order.			CO2,4	PO1,2,3	10														
	b)	Construct a Max Heap for the following list of keys and sort the list using Heap Sort technique. Write the algorithm for Max Heap. {2,9,7,6,5,8}			CO2,4	PO1,2,3	10														
		OR																			
5	a)	State Horner’s rule with an algorithm. Apply Horner’s rule to evaluate the following polynomial: $5x^4 + 2x^3 - 3x^2 + x - 7$ at the point $x=3$.			CO2	PO1,2	10														
	b)	Demonstrate the Strassen’s Matrix Multiplication method with an example.			CO2	PO2	10														
		UNIT - IV																			
6	a)	Analyze time efficiency of Prim’s algorithm. Apply Prim’s algorithm to find the minimum cost spanning tree for the graph shown below:			CO2,4	PO1,2,3	10														
	b)	Construct a Huffman tree and find the code word for the following data:			CO2,4	PO1,2	10														
		<table border="1"> <tr> <td>Character</td><td>A</td><td>B</td><td>C</td><td>D</td><td>E</td><td>-</td></tr> <tr> <td>Frequency</td><td>0.5</td><td>0.35</td><td>0.5</td><td>0.1</td><td>0.4</td><td>0.2</td></tr> </table> Using above code, Encode the text DAD_CBE and decode the text 1000010111001010.			Character	A	B	C	D	E	-	Frequency	0.5	0.35	0.5	0.1	0.4	0.2			
Character	A	B	C	D	E	-															
Frequency	0.5	0.35	0.5	0.1	0.4	0.2															
		UNIT - V																			
7	a)	Solve the following instance of 0/1 Knapsack problem using Branch and Bound with capacity C=10. Items={1,2,3,4} Weights={4,7,5,3} Values={\\$40, \\$42, \\$25,\\$12}			CO2,4	PO1,2	10														
	b)	Describe the P and NP class problems with examples. Illustrate NP Completeness proof by Reduction.			CO3	PO1,2	10														
