

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

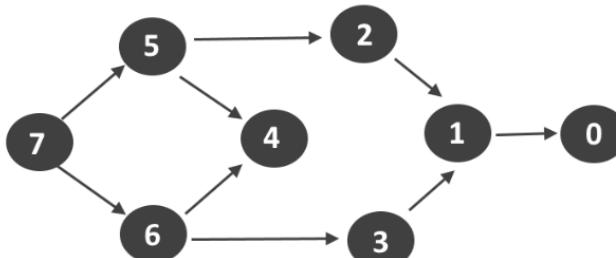
Programme: B.E.

Semester: IV

Branch: Computer Science and Engineering

Duration: 3 hrs.

Course Code: 23CS4PCADA


Max Marks: 100

Course: Analysis and Design of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			<i>CO</i>	<i>PO</i>	Marks
1	a)	Derive the best case, average case and worst-case time complexities of Binary search algorithm.	<i>CO 1</i>	<i>PO 2</i>	5
	b)	Differentiate among different types of asymptotic notations with suitable example.	<i>CO 1</i>	<i>PO 2</i>	10
	c)	Find time complexity for the below algorithm: ALGORITHM UniqueElements(A[0..n - 1]) //Determines whether all the elements in a given array are distinct //Input: An array A[0..n - 1] //Output: Returns “true” if all the elements in A are distinct // and “false” otherwise for i ← 0 to n - 2 do for j ← i + 1 to n - 1 do if A[i] = A[j] return false return true	<i>CO 1</i>	<i>PO 2</i>	5
			UNIT - II		
2	a)	“Johnson Trotter method is efficient method for generating permutation”? Justify the statement. Generate all permutation for the following set using Johnson Trotter algorithm: {1,3,5,7}	<i>CO 2</i>	<i>PO 1</i>	6
	b)	Find topological ordering of the vertices for the below directed acyclic graph using DFS method and Source removal method.	<i>CO 2</i>	<i>PO 1</i>	8

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Write an algorithm for computing the median using Decrease and Conquer technique.	CO 2	PO 1	6
		UNIT - III			
3	a)	Discuss Divide and Conquer strategy. Explain Merge sort algorithm with example and give its recurrence relation.	CO 2	PO 1	10
	b)	Apply bottom up heap sort technique to sort the following list of elements. Also write an algorithm for the same. { 2, 9, 7, 6, 5, 8 }	CO 2	PO 1	10
		OR			
4	a)	Strassen's matrix multiplication method is efficient compare to traditional matrix multiplication? Justify the statement with an example scenario.	CO 1	PO 2	10
	b)	Demonstrate all the cases of Horspool pattern matching technique. Apply the technique to search for the pattern " ALGORITHMS " in the text " ANALYSIS AND DESIGN OF ALGORITHMS ". Also find its time efficiency.	CO 1	PO 2	10
		UNIT - IV			
5	a)	Find the minimum spanning tree for the following graph using Kruskal's algorithm. Also write an algorithm for the same.	CO 2	PO 1	10
	b)	Solve the following instance of Knapsack by Dynamic programming technique: Number of objects n = 4 Weights (W_i) = {2, 3, 4, 5} Profits (P_i) = {3, 4, 5, 6} Knapsack Capacity C=5	CO 2	PO 1	10
		OR			
6	a)	Find the transitive closure for the relation R={(2,1),(2,3),(3,1),(3,4),(4,1),(4,3)} on set A={1,2,3,4} using Warshall's algorithm. Also write an algorithm for the same and find its time complexity.	CO 2	PO 1	10

	b)	<p>Consider the five-symbol alphabet {A, B, C, D, _ } with the following occurrence frequencies in a text made up of these symbols.</p> <table border="1"> <thead> <tr> <th>Symbol</th><th>A</th><th>B</th><th>C</th><th>D</th><th>_</th></tr> </thead> <tbody> <tr> <td>Frequency</td><td>0.35</td><td>0.1</td><td>0.2</td><td>0.2</td><td>0.15</td></tr> </tbody> </table> <p>Construct Huffman tree and generate the code for the symbols. Also write Huffman's algorithm.</p>	Symbol	A	B	C	D	_	Frequency	0.35	0.1	0.2	0.2	0.15	CO 2	PO 1	10
Symbol	A	B	C	D	_												
Frequency	0.35	0.1	0.2	0.2	0.15												
		UNIT - V															
7	a)	<p>Solve the travelling salesman problem for the following graph using Branch and Bound technique.</p>	CO 2	PO 1	10												
	b)	<p>Apply Backtracking technique to find the sum of subsets for the set $s=\{3,5,6,7\}$ and $d=15$. Draw a state space tree.</p>	CO 2	PO 1	10												
