

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 23CS4PCADA

Course: Analysis and Design of Algorithms

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>By applying the steps in finding out the time complexity of non-recursive, find the time complexity for the following code:</p> <pre>fun(a) { int x=0; for(i=1;≤n;i++) { for(j=1;j≤n;j++) { if(i==j) { x=x+a[i][j]; } } } printf("%d",x); }</pre>	CO1	PO2	6
	b)	Demonstrate with an example scenario the Worst case, Best case and Average case time complexity of an algorithm.	CO2	PO1	8
	c)	<p>Solve the following recurrence relation using backward substitution method:</p> <ol style="list-style-type: none"> $x(n)=x(n/2)+n$ for $n>1$, $x(1)=1$ $x(n)=x(n-1)+5$ for $n>1$ and $x(0)=0$ 	CO2	PO1	6
OR					
2	a)	Linear Search varies its time complexity for the best case and worst case. Justify your answer.	CO1	PO1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Consider the following algorithm.</p> <pre> Procedure Secret(A[0..n-1]) // Input: An array A[0..n-1] of integers minval←A[0]; maxval←A[0] for i←1 to n-1 do if A[i]<minval minval←A[i] if A[i]>maxval maxval←A[i] return maxval-minval </pre> <p>i. What does this algorithm compute? ii. What is its basic operation? iii. How many times is the basic operation executed? iv. Provide an exact expression for the running time T(n) of the algorithm. v. What is the order of T(n)?</p>	CO2	PO1	8
	c)	<p>Consider the following recursive algorithm computing the sum of the first n cubes</p> $S(n) = 1^3 + 2^3 + \dots + n^3$ <p>Algorithm S(n)</p> <pre> //Input: A positive integer n //Output: The sum of the first n cubes if n = 1 return 1 else return S(n - 1) + n * n * n </pre> <p>Set up and solve a recurrence relation for the number of times the algorithm's basic operation is executed.</p>	CO2	PO1	6
		UNIT - II			
3	a)	<p>Apply Decrease and Conquer technique to find Topological order for the following graph using DFS method and Source Removal method with the source vertex '1':</p>	CO2	PO1	8
	b)	<p>Determine the number of character comparisons made by the Brute-Force pattern matching algorithm in searching for the pattern "WOOD" in the text "TWO_ROADS_DIVERGED_IN_A_YELLOW_WOOD". Also write an algorithm for the same and derive the best-case and worst-case time complexities.</p>	CO1	PO2	8

	c)	Johnson Trotter is an efficient method to generate the permutations? Justify your answer with an example.	CO2	PO2	4
		OR			
4	a)	You are given an unsorted list of distinct integers: [12, 3, 5, 7, 19, 26, 1, 8]. Use decrease and conquer algorithm to demonstrate the finding of 3rd smallest element in the list. Write the algorithm for the same	CO2	PO2	8
	b)	Discuss the advantages and Disadvantages of Brute force technique. Apply Brute force technique to list all tours starting from city p and find the shortest among them	CO2	PO2	8
	c)	<p>Demonstrate the multiplication of two n digit numbers using decrease by constant factor technique. Apply the same to multiply the numbers 85*18</p>	COI	POI	4
		UNIT - III			
5	a)	Is merge sort is better than quick sort in the worst case? justify your answer by deriving the time complexities for both in worst case.	COI	PO2	8
	b)	Create a min heap tree for the following list of elements and sort an array: {58, 25, 35, 38, 110, 48, 18}	CO2	POI	8
	c)	Apply Divide and Conquer technique to multiply the following two long integers: 2547 and 1605	CO2	POI	4
		OR			
6	a)	For the given array, write an algorithm to determine mode using the concept of presorting and analyze its time complexity.	COI	PO2	6
	b)	Construct Merge Sort tree to sort the following list of elements in the ascending order: {10,34,22,11,54,66,33,24,25,56,77,21}	CO2	POI	8

	c)	Apply Stressen's matrix multiplication to multiply the following two matrices.	CO2	POI	6																																										
		<table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>5</td><td>6</td><td>1</td><td>2</td></tr> <tr><td>3</td><td>4</td><td>5</td><td>6</td></tr> <tr><td>1</td><td>2</td><td>3</td><td>4</td></tr> <tr><td>5</td><td>6</td><td>7</td><td>8</td></tr> </table> <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>1</td><td>2</td><td>3</td><td>4</td></tr> <tr><td>2</td><td>5</td><td>7</td><td>9</td></tr> <tr><td>3</td><td>4</td><td>7</td><td>8</td></tr> <tr><td>1</td><td>3</td><td>5</td><td>7</td></tr> </table>	5	6	1	2	3	4	5	6	1	2	3	4	5	6	7	8	1	2	3	4	2	5	7	9	3	4	7	8	1	3	5	7													
5	6	1	2																																												
3	4	5	6																																												
1	2	3	4																																												
5	6	7	8																																												
1	2	3	4																																												
2	5	7	9																																												
3	4	7	8																																												
1	3	5	7																																												
UNIT - IV																																															
7	a)	Several chocolates are placed in cells of an $n \times m$ board, no more than one chocolate per cell. A kid is standing at the upper left cell of the board, needs to collect as many of the chocolates as possible and bring them to the bottom right cell. On each step, the kid can move either one cell to the right or one cell down from its current location. When the kid visits a cell with a chocolate, he/she always picks up that chocolate. Find the maximum number of chocolates that the kid can collect and a path it needs to follow to do this.	CO2	POI	6																																										
<table border="1" style="margin-left: auto; margin-right: auto;"> <tr><td></td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td></tr> <tr><td>1</td><td></td><td></td><td></td><td>Chocolate</td><td></td><td></td></tr> <tr><td>2</td><td></td><td>Chocolate</td><td></td><td></td><td>Chocolate</td><td>Chocolate</td></tr> <tr><td>3</td><td>Chocolate</td><td></td><td>Chocolate</td><td></td><td></td><td></td></tr> <tr><td>4</td><td></td><td>Chocolate</td><td></td><td></td><td>Chocolate</td><td></td></tr> <tr><td>5</td><td></td><td></td><td></td><td>Chocolate</td><td></td><td>Chocolate</td></tr> </table>							1	2	3	4	5	6	1				Chocolate			2		Chocolate			Chocolate	Chocolate	3	Chocolate		Chocolate				4		Chocolate			Chocolate		5				Chocolate		Chocolate
	1	2	3	4	5	6																																									
1				Chocolate																																											
2		Chocolate			Chocolate	Chocolate																																									
3	Chocolate		Chocolate																																												
4		Chocolate			Chocolate																																										
5				Chocolate		Chocolate																																									
	b)	Apply Kruskal's algorithm to find minimum spanning tree for the following graph. Show the steps completely.	CO2	POI	8																																										
	c)	<p>Explain Spanning tree and Minimum Spanning tree with an example.</p>	CO2	POI	6																																										
		OR																																													

8	a)	<p>Solve the 0/1 Knapsack problem for the following data using Dynamic programming technique. Find the objects selected for an optimal solution. Also write an algorithm for the same.</p> <p>Number of objects n=5, Knapsack Capacity=6</p> <table border="1"> <thead> <tr> <th>Item No.</th><th>Profit</th><th>Weight</th></tr> </thead> <tbody> <tr> <td>1</td><td>25</td><td>3</td></tr> <tr> <td>2</td><td>20</td><td>2</td></tr> <tr> <td>3</td><td>15</td><td>1</td></tr> <tr> <td>4</td><td>40</td><td>4</td></tr> <tr> <td>5</td><td>50</td><td>5</td></tr> </tbody> </table>	Item No.	Profit	Weight	1	25	3	2	20	2	3	15	1	4	40	4	5	50	5	CO2	PO1	8
Item No.	Profit	Weight																					
1	25	3																					
2	20	2																					
3	15	1																					
4	40	4																					
5	50	5																					
	b)	<p>Apply Dijkstra's algorithm to find shortest path from the vertex 'A' to all other vertices for the following graph:</p>	CO2	PO1	8																		
	c)	<p>Differentiate between Floyd's algorithm and Dijkstra's algorithm with an example.</p>	CO2	PO2	4																		
		UNIT - V																					
9	a)	<p>Distinguish between P, NP and NP completeness problem.</p>	CO3	PO2	6																		
	b)	<p>Apply Backtracking technique to find Sum of Subsets for a set $S= \{12, 16, 27, 43\}$ and $M=55$. Represent the complete state space tree for finding all possible subsets.</p>	CO2	PO1	6																		
	c)	<p>Apply Branch and Bound approach to solve the Knapsack problem for the following data:</p> <p>Number objects n=4, Knapsack Capacity M=10</p> <table border="1"> <thead> <tr> <th>Item No.</th> <th>Profit</th> <th>Weight</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>40</td> <td>4</td> </tr> <tr> <td>2</td> <td>42</td> <td>7</td> </tr> <tr> <td>3</td> <td>25</td> <td>5</td> </tr> <tr> <td>4</td> <td>12</td> <td>3</td> </tr> </tbody> </table>	Item No.	Profit	Weight	1	40	4	2	42	7	3	25	5	4	12	3	CO2	PO1	8			
Item No.	Profit	Weight																					
1	40	4																					
2	42	7																					
3	25	5																					
4	12	3																					
		OR																					
10	a)	<p>Explain n-queens problem and its solution using backtracking with a example.</p>	CO2	PO1	6																		
	b)	<p>Convert below 3CNF to clique problem and also find solution for the same. Show the steps.</p> <p>$CNF = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3}) \wedge (x_1 \vee x_2 \vee x_3)$</p>	CO3	PO2	6																		
	c)	<p>Describe branch and bound solution to travelling Salesman problem with example</p>	CO2	PO1	8																		
