

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

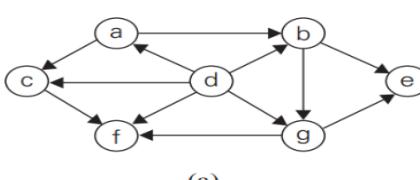
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Computer Science and Engineering


Duration: 3 hrs.

Course Code: 23CS4PCADA / 22CS4PCADA / 19CS4PCADA

Max Marks: 100

Course: Analysis and Design of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	List and identify the fundamental properties of algorithmic problem solving.	CO2	PO1	8
	b)	Explain different asymptotic notations used to represent the time complexities.	CO1	PO2	6
	c)	Explain the general plan for analyzing the efficiency of a non-recursive algorithm with an example	CO1	PO2	6
OR					
2	a)	Compare and analyze the time and space complexity of recursive and non-recursive versions of the algorithm to calculate the factorial of a number. Discuss the advantages and disadvantages of each approach.	CO1	PO2	8
	b)	Using Master theorem obtain the time complexity of the following recurrence relations i) $T(n) = 16T(n/4) + n$ ii) $T(n) = 3T(n/3) + n/2$ iii) $T(n) = 6T(n/3) + n^2 \log n$	CO1	PO2	6
	c)	Explain the general plan for analyzing the efficiency of a recursive algorithm with an example.	CO1	PO2	6
UNIT - II					
3	a)	Build a pattern matching algorithm to search a given pattern using brute force technique and outline the time complexity for the same	CO2	PO1	7
	b)	i) Using decrease and conquer technique obtain the topological sorting for the following digraph (a)	CO2	PO1	7
 (a)					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

		<p>ii) The table shows the courses with their prerequisites. Find the correct order in which a student can register for all the courses.</p> <table border="1"> <thead> <tr> <th>Prerequisite</th><th>Course</th></tr> </thead> <tbody> <tr> <td>Mathematics</td><td>Physics</td></tr> <tr> <td>Mathematics</td><td>CS</td></tr> <tr> <td>CS</td><td>AI</td></tr> <tr> <td>Physics</td><td>AI</td></tr> </tbody> </table>	Prerequisite	Course	Mathematics	Physics	Mathematics	CS	CS	AI	Physics	AI			
Prerequisite	Course														
Mathematics	Physics														
Mathematics	CS														
CS	AI														
Physics	AI														
	c)	Compute the product of $50*65$ using Russian peasant method.	CO2	POI	6										
OR															
4	a)	Obtain the optimal solution for the knapsack problem using exhaustive search. Given, knapsack capacity $M = 40$, number of items, $n = 4$, $\{w_1, w_2, w_3, w_4\} = \{20, 25, 10, 15\}$ represents weights of 4 objects, $\{p_1, p_2, p_3, p_4\} = \{30, 40, 35, 10\}$ represents profits of 4 objects.	CO2	POI	6										
	b)	Write the Johnson Trotter algorithm and demonstrate the same for the objects 2,4,6,8 .	CO2	POI	7										
	c)	Apply the partition-based algorithm to find the median of the following list of nine elements : 4,1,10,8,7,12,9,2,15 .	CO2	POI	7										
UNIT - III															
5	a)	A search engine retrieves 10 webpages based on a user query and assigns them relevance scores as [85, 60, 95, 70, 50, 90, 80, 75, 65, 55] . Apply the fastest sorting algorithm to sort the pages based on scores by choosing pivot element as 55.	CO2	POI	8										
	b)	<p>You are developing a plagiarism detection system that needs to quickly identify if a specific sequence of words (pattern) appears within a large text (document). To improve performance, your system uses the Boyer-Moore string matching algorithm.</p> <p>Given:</p> <p>Text: "The quick brown fox jumps over the lazy dog. The quick brown fox is clever."</p> <p>Pattern: "quick brown"</p>	CO2	POI	8										
	c)	With an example explain Horner's rule.	CO2	POI	4										
OR															
6	a)	You are given a list of job priorities to be executed by a server: [12, 7, 6, 10, 8, 20, 15, 2] . Using a transform and conquer technique, sort the jobs in descending order of priority.	CO2	POI	8										
	b)	<p>Assume You are analyzing a DNA strand represented as a string:</p> <p>Text: "AGCTTAGCTAAGCTTGCAGCTT"</p> <p>Pattern: "GCTT"</p> <p>Apply an appropriate algorithm to find the number of comparisons made and the shift values used during the search.</p>	CO2	POI	8										

	c)	Multiply the matrices shown below using Strassen's matrix multiplication. $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 & 0 \\ 0 & 30 \end{bmatrix}$	CO2	PO1	4
		UNIT - IV			
7	a)	A company is analyzing its internal communication network across different departments. There are 5 departments labeled A, B, C, D, and E. The communication between them is represented as a directed graph, where an edge from department X to Y means information can be sent directly from X to Y. Compute the transitive closure of the communication matrix.	CO2	PO1	10
		$\begin{array}{ccccc} & \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E} \\ \mathbf{A} & 0 & 1 & 0 & 0 & 0 \\ \mathbf{B} & 0 & 0 & 1 & 0 & 0 \\ \mathbf{C} & 0 & 0 & 0 & 1 & 0 \\ \mathbf{D} & 0 & 0 & 0 & 0 & 1 \\ \mathbf{E} & 0 & 0 & 0 & 0 & 0 \end{array}$			
	b)	Construct a Dijkstra's algorithm and find the Single Source Shortest Path (SSSP) for the following graph by taking a as source vertex.	CO2	PO1	10
		OR			
8	a)	Develop an algorithm to find all pair shortest path. Apply the algorithm to find the all-pair shortest path of a below shown graph using dynamic programming.	CO2	PO1	10

	b)	<p>A messaging app stores common phrases as compressed text using Huffman encoding. The following phrases occur with the frequencies listed:</p> <p>Phrase Frequency</p> <table> <tbody> <tr><td>"OK"</td><td>100</td></tr> <tr><td>"Thanks"</td><td>40</td></tr> <tr><td>"LOL"</td><td>30</td></tr> <tr><td>"See you"</td><td>20</td></tr> <tr><td>"On my way"</td><td>10</td></tr> </tbody> </table> <p>Construct the Huffman Tree for the above data and generate the Huffman codes for each phrase. Also find the storage space required before and after coding.</p>	"OK"	100	"Thanks"	40	"LOL"	30	"See you"	20	"On my way"	10	CO2	PO1	10
"OK"	100														
"Thanks"	40														
"LOL"	30														
"See you"	20														
"On my way"	10														
		UNIT - V													
9	a)	Illustrate with an example how backtracking technique is used in N-Queens problem for N=4.	CO2	PO1	6										
	b)	With an example explain NP hard and NP complete problems	CO3	PO1	8										
	c)	<p>A surveillance system needs to place cameras at intersections in a city such that every road is monitored by at least one camera at its endpoints. The city's map is represented as an undirected graph, where intersections are vertices and roads are edges:</p> <p>Vertices (Intersections): {A, B, C, D, E}</p> <p>Edges (Roads): {(A, B), (A, C), (B, D), (C, D), (D, E)}</p> <p>Model the above scenario as vertex cover problem and determine whether there is a vertex cover of size 3.</p>	CO3	PO1	6										
		OR													
10	a)	<p>Examine for the 0 / 1 Knapsack problem using Branch and Bound where Knapsack capacity m=15 and n=4</p> <table border="1"> <tbody> <tr><td>Profit</td><td>10</td><td>10</td><td>12</td><td>18</td></tr> <tr><td>Weight</td><td>2</td><td>4</td><td>6</td><td>9</td></tr> </tbody> </table>	Profit	10	10	12	18	Weight	2	4	6	9	CO2	PO1	10
Profit	10	10	12	18											
Weight	2	4	6	9											
	b)	What is backtracking? Apply backtracking to solve the below instance of sum of subset problem S = {5,10,12,13,15,18}, d=30. Write the appropriate steps to explain the iterations.	CO2	PO1	10										
