

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 23CS4ESCRP

Course: Cryptography

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	<i>CO</i>	<i>PO</i>	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Identify the different security goals and attacks in cryptography.	<i>CO1</i>	<i>PO3</i>	8
		b)	Explain how transposition techniques differ from substitution technique.	<i>CO1</i>	<i>PO1</i>	5
		c)	Illustrate with an example the encryption process of the Playfair cipher.	<i>CO1</i>	<i>PO1</i>	7
			OR			
	2	a)	What is monoalphabetic cipher? Explain how it differs from Caesar cipher with an example.	<i>CO1</i>	<i>PO1</i>	8
		b)	Identify the properties of modular arithmetic operation and consider modulo 8 perform the arithmetic modulo 8 and multiplication modulo 8.	<i>CO1</i>	<i>PO1</i>	5
		c)	Explain the following with an example. i) Playfair cipher ii) Rail fence cipher iii) Vigenere cipher	<i>CO1</i>	<i>PO1</i>	7
			UNIT - II			
	3	a)	Illustrate the encryption and decryption process for the Advanced Encryption standard (AES).	<i>CO2</i>	<i>PO2</i>	10
		b)	Explain in detail about the entities in the symmetric cipher model with their requirements for secure usage of the model.	<i>CO1</i>	<i>PO1</i>	5
		c)	Differentiate between Advance Encryption standard (AES) and Data Encryption Standard (DES).	<i>CO2</i>	<i>PO2</i>	5
			UNIT - III			
	4	a)	Apply Fermat's theorem to find the values of the following: (i) $5^{15} \bmod 13$ (ii) $15^{18} \bmod 17$	<i>CO1</i>	<i>PO1</i>	6

	b)	<p>State Chinese Remainder theorem and find the value of x for the given set of congruent equations using Chinese Remainder theorem.</p> $X \equiv 1 \pmod{5}$ $X \equiv 2 \pmod{7}$ $X \equiv 3 \pmod{9}$ $X \equiv 4 \pmod{11}$	CO1	PO1	8
	c)	<p>Find the values of the following and justify:</p> <p>(a) $\phi(29)$ (b) $\phi(32)$ (c) $\phi(80)$</p>	CO1	PO1	6
UNIT - IV					
5	a)	Analyze the Elliptic curve cryptography method to explain the generation of private and public key.	CO2	PO2	5
	b)	Outline the step-by-step procedure for generating a digest using SHA-512. Explain how an input message is handled, covering the padding scheme, processing of message blocks, utilization of the compression function and the finalization steps.	CO1	PO1	8
	c)	Identify main components of the ElGamal cryptosystem. Explain how the keys are generated in the ElGamal cryptosystem?	CO1	PO1	7
	OR				
6	a)	Given prime numbers $p=11$, $q=19$ and value of $d=17$. Apply RSA algorithm for the cipher message =80 and find the plain text.	CO1	PO1	5
	b)	Why asymmetric key cryptographic is not suitable for large data? What are some commonly used asymmetric key algorithms?	CO1	PO1	8
	c)	Explain cryptographic hash function. List essential properties of a good cryptographic hash function.	CO1	PO1	7
UNIT - V					
7	a)	Demonstrate the Diffie Hellman key exchange methodology using following key values: $p=11$, $g=2$, $X_A=9$, $X_B=4$	CO1	PO1	7
	b)	Discuss the four requirements of Kerberos.	CO1	PO1	4
	c)	Discuss about the elements of X.509 Certificate.	CO1	PO1	9
