

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: Computer Science and Engineering

Duration: 3 hrs.

Course Code: 23CS4ESCRP

Max Marks: 100

Course: Cryptography

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Analyze the following requirements and identify which security goals are addressed in each of the following cases. Provide justification for each goal identified. a. A healthcare system requires doctors to use biometric authentication to access patient records. b. An online examination system automatically logs students out after 30 minutes of inactivity. c. An e-commerce platform encrypts customer payment information during transmission. d. A financial institution maintains multiple redundant servers to ensure continuous access to online banking services.	CO2	PO2	6
	b)	Find the multiplicative inverse of 17 modulo 133 using the Extended Euclidean Algorithm.	CO2	PO2	6
	c)	Encrypt the message "attack" using the Hill cipher with the key matrix $\begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix}$. Show the steps of encryption.	CO1	PO1	8
OR					
2	a)	Explain a field with example and distinguish between an infinite field and a finite field.	CO1	PO1	8
	b)	Use a brute-force attack to decipher the following message. Assume that you know it is encrypted using an Affine cipher and that the plaintext "ab" is enciphered to "IL". The encrypted message is "eqtaqbvuve". a. What are the possible values for the Affine cipher key parameters K_1 and K_2 ? b. Decrypt the encrypted message using each possible key combination to obtain the plaintext.	CO2	PO2	4
	c)	Use the extended Euclidean algorithm to find the inverse of $(x^4 + x^3 + 1)$ in $GF(2^5)$ using the modulus $(x^5 + x^2 + 1)$.	CO1	PO1	8

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT-II					
3	a)	Create a linear feedback shift register with 4 cells in which $b_4 = b_1 \oplus b_0$. Show the value of output for 1 st 20 transitions (shifts) if the seed is $(1110)_2$.	<i>CO1</i>	<i>PO1</i>	8
	b)	Design a pseudocode/algorithm for the AES-128 key-expansion routine.	<i>CO2</i>	<i>PO2</i>	6
	c)	Compare and contrast DES and AES. Discuss the security strengths and weaknesses of DES and AES. Analyze the performance of DES and AES in terms of speed and computational efficiency. Provide examples of real-world applications where DES and AES are used.	<i>CO1</i>	<i>PO1</i>	6
UNIT-III					
4	a)	Find the results of the following, using Fermat's little theorem: a. $15^{15} \bmod 13$ b. $15^{18} \bmod 17$	<i>CO1</i>	<i>PO1</i>	6
	b)	State the Chinese Remainder Theorem and find X for the given set of congruent equations $X \equiv 4 \bmod 5$, $X \equiv 10 \bmod 11$.	<i>CO1</i>	<i>PO3</i>	8
	c)	Using quadratic residues, solve the following equation: $x^2 \equiv 4 \bmod 14$	<i>CO2</i>	<i>PO2</i>	6
UNIT-IV					
5	a)	Differentiate between symmetric-key and asymmetric-key cryptosystems.	<i>CO1</i>	<i>PO1</i>	6
	b)	Find the value of 'd' and perform decryption and encryption using RSA algorithm with $p=7$, $q=13$, $e=7$ and Message=10.	<i>CO1</i>	<i>PO1</i>	6
	c)	In ElGamal, given the prime $p = 31$: a. Choose an appropriate e_1 and d , then calculate e_2 . b. Encrypt the following messages "H", "E", "L"; use 00 to 25 for encoding.	<i>CO2</i>	<i>PO2</i>	8
OR					
6	a)	Consider an elliptic curve $E_{11}(1,1)$ over a finite field 11. The generator point G is $(6,6)$. Assume that the private value $n = 2$. 1) Find the equation of the curve. 2) Find at least five points on the curve	<i>CO1</i>	<i>PO1</i>	12
	b)	Define a cryptographic hash function. Illustrate the working of message digest creation in SHA-512 with neat diagram.	<i>CO1</i>	<i>PO1</i>	8
UNIT-V					
7	a)	Identify and explain the types of attacks on digital signatures. provide a specific example scenario that illustrates how the above attack could be carried out on digital signatures.	<i>CO1</i>	<i>PO1</i>	6

	b)	A Tech company experienced a security breach where their encrypted communication channel was compromised. This resulted in the unauthorized access and exposure of confidential company data. Investigate how an attacker could have executed a man-in-the-middle (MitM) attack against the Diffie-Hellman key exchange to gain access to this sensitive information with neat diagram.	<i>CO1</i>	<i>PO1</i>	8
	c)	Create a neat diagram that clearly illustrates the structure of an X.509 certificate. Label each part of the certificate and briefly describe its purpose.	<i>CO2</i>	<i>PO2</i>	6

SUPPLEMENTARY EXAMS 2024