

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E

Branch: Computer Science and Engineering

Course Code: 19CS4PCTFC

Course: Theoretical Foundations of Computations

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Date: 21.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Design DFA for accepting strings ($\Sigma = \{0,1\}$) 10

- i. Whose Length is divisible by 3
- ii. Which have the pattern 001
- iii. Which ends with the pattern 011
- iv. Whose value is divisible by 2
- v. Which have minimum three 1's in it.

b) Design NFA for accepting strings over $\Sigma = \{0,1\}$ which has a 1 in the second last position. Convert the resulting NFA to DFA by subset construction method. 7

c) Design epsilon NFA for accepting signed integer. 3

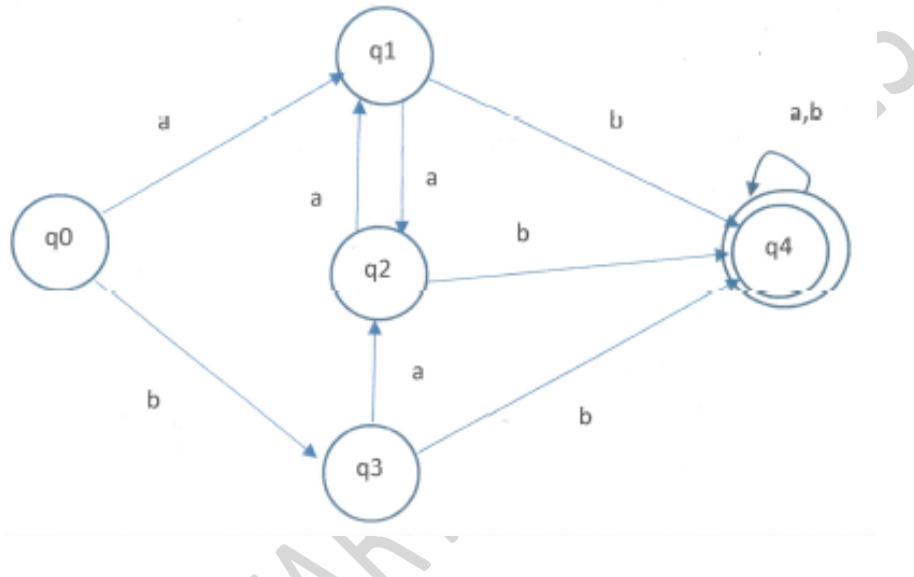
UNIT - II

2 a) Design regular expressions for accepting the below languages over $\Sigma = \{a,b\}$. 12

- i. Strings start with ab or ba
- ii. Strings having even number of a's
- iii. Strings having alternate a's and b's
- iv. Strings of odd length
- v. Strings end with abb
- vi. Strings having baa

b) Show that regular languages are closed under 8

- i. Union
- ii. Complementation
- iii. Intersection.


Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR

3 a) Convert the below DFA to regular expression using Kleene's theorem: 10

	0	1
$\rightarrow q_0$	q_1	q_0
$*q_1$	q_1	q_1

b) Minimize the below DFA. Here, $\Sigma = \{a, b\}$ 10

UNIT - III

4 a) Design Context Free Grammar (CFG) for below languages. 10

- i. $L = \{a^n b^n c^m | n, m \geq 0\}$
- ii. $L = \{w | w \text{ is string of } a's \text{ and } b's \text{ and } w \text{ is palindrome}\}$
- iii. $L = \{a^n b^m | n < m, m, n \geq 0\}$
- iv. $L = \{a^n b^m c^m d^n | m, n \geq 1\}$
- v. $L = \{w | w \text{ is string of } a's \text{ and } b's \text{ and } |w| \bmod 3 = 0\}$

b) Derive the string **00011** using below grammar with Leftmost and Rightmost derivation. 5

$$\begin{aligned} S &\rightarrow A1B \\ A &\rightarrow 0A \mid \epsilon \\ B &\rightarrow 0B \mid 1B \mid \epsilon \end{aligned}$$

c) Eliminate epsilon productions in the grammar. Given below 5

$$\begin{aligned} S &\rightarrow ABCa \mid bD \\ A &\rightarrow BC \mid b \\ B &\rightarrow b \mid \epsilon \\ C &\rightarrow c \mid \epsilon \\ D &\rightarrow d \end{aligned}$$

OR

5 a) Eliminate the useless symbols and productions in the below grammar. 10

$S \rightarrow aA|bB$
 $A \rightarrow aA|a$
 $B \rightarrow bB$
 $D \rightarrow ab|Ea$
 $E \rightarrow aC|d$

b) Convert the below grammar to CNF. 5

$S \rightarrow 0A|1B$
 $A \rightarrow 0AA|1S|1$
 $B \rightarrow 1A|0$

c) Show that the below grammar is ambiguous. 5

$S \rightarrow aB|bA$
 $A \rightarrow aS|bAA|a$
 $B \rightarrow bS|aBB|b$

UNIT - IV

6 a) Design a Push Down Automata (PDA) for accepting the language 6
 $L = \{WCW^R \mid W \text{ is string of a's and b's}\}$

b) Convert the below grammar to PDA. 6

$S \rightarrow aABC$
 $A \rightarrow aB|a$
 $B \rightarrow bA|b$
 $C \rightarrow a$

c) Design PDA for accepting $L = \{a^n b^{2n} \mid n \geq 1\}$. Also check whether the string 8
“aabbbb” is accepted or not using ID.

UNIT - V

7 a) Design Turing machine for accepting $L = \{0^n 1^n \mid n \geq 1\}$. Also show whether the 9
string “00111” is accepted or not.
b) Design Turing machine to accept the strings that end with 011 ($\Sigma = \{0,1\}$). 6
c) Describe the Multi tape Turing machine with a neat diagram. 5
