

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

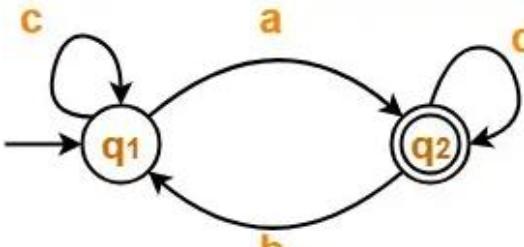
August 2024 Supplementary Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 19CS4PCTFC

Course: Theoretical Foundations of Computations


Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I																		
			CO	PO	Marks																
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	i. Design a FA with $\Sigma = \{0, 1\}$ accepts the strings with an even number of 0's followed by single 1. ii. Design an NFA with $\Sigma = \{0, 1\}$ accepts all string in which the third symbol from the right end is always 0.	CO2	PO 2	8M															
		b)	Convert the following NFA to DFA <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td></td><td>0</td><td>1</td></tr> <tr> <td>->p</td><td>{q,s}</td><td>{q}</td></tr> <tr> <td>*q</td><td>{r}</td><td>{q,r}</td></tr> <tr> <td>r</td><td>{s}</td><td>{p}</td></tr> <tr> <td>*s</td><td>Ø</td><td>{p}</td></tr> </table>		0	1	->p	{q,s}	{q}	*q	{r}	{q,r}	r	{s}	{p}	*s	Ø	{p}	CO2	PO2	8M
		0	1																		
->p	{q,s}	{q}																			
*q	{r}	{q,r}																			
r	{s}	{p}																			
*s	Ø	{p}																			
	c)	Write any four differences between NFA, DFA?	CO1	PO1	4M																
			UNIT - II																		
2	a)	i. Write the regular expression for the language starting with a but not having consecutive b's. ii. Write the regular expression for the language having a string which should have at least one 0 and at least one 1. iii. Write the regular expression for the language L over $\Sigma = \{0, 1\}$ such that all the string does not contain the substring 01. iv. Write the regular expression for the language containing the string in which every 0 is immediately followed by 11. v. Write the regular expression for the language starting and ending with a and having any having any combination of b's in between.	CO2	PO2	10M																
		b)	Prove that $L = \{a^n b^1 c^{n+1} \mid n, 1 \geq 0\}$ is not regular	CO2	PO2	5M															
		c)	Obtain an NFA for the regular expression $a^* + b^* + c^*$	CO3	PO3	5M															

OR					
3.	a)	i. Write the regular expression from the given DFA ii. Obtain the regular expression for the following a. string's of a's and b's of length <=10 b. string's of a's and b's ending with b and has no substring aa	<i>CO3</i>	<i>PO3</i>	10M
	b)	Prove that “The set of regular languages is closed under complementation”	<i>CO2</i>	<i>PO2</i>	5M
	c)	Prove that $L=\{a^n b^n \text{ where } n \geq 1\}$ is not regular.	<i>CO2</i>	<i>PO2</i>	5M
	UNIT - III				
4	a)	i. Obtain a CFG to generate a string of balanced parenthesis ii Obtain the grammar to generate the language $L=\{a^n b^{n-3} n \geq 3\}$	<i>CO2</i>	<i>PO2</i>	8M
	b)	Show that the following grammar is ambiguous over $w=((())())$ $S \rightarrow SS/ (S)/ \epsilon$	<i>CO2</i>	<i>PO2</i>	6M
	c)	Eliminate useless symbols in the following grammar $S \rightarrow aA \mid bB$ $A \rightarrow aA \mid a$ $B \rightarrow bB \mid a$ $D \rightarrow ab \mid Ea$ $E \rightarrow aC \mid d$	<i>CO2</i>	<i>PO2</i>	6M
	OR				
5	a)	i. Obtain the leftmost derivation for the string “aaabbabbba” using the following grammar $S \rightarrow aB \mid bA$ $A \rightarrow aS \mid bAA \mid a$ $B \rightarrow bS \mid aBB \mid b$ ii. obtain CFG to generate a set of all strings with exactly one a when $\Sigma=\{a,b\}$	<i>CO3</i>	<i>PO3</i>	8M
	b)	Convert the following grammar to Greibach Normal Form $S \rightarrow AB1 \mid 0$ $A \rightarrow 00A \mid B$ $B \rightarrow 1A1$	<i>CO2</i>	<i>PO2</i>	6M
	c)	Eliminate the unit productions from the grammar $S \rightarrow A0 \mid B$ $B \rightarrow A \mid 1$ $A \rightarrow 0 \mid 12 \mid B$	<i>CO2</i>	<i>PO2</i>	6M

UNIT - IV					
6	a)	Construct PDA to recognize the language $L=\{a^n b^{2n}, n \geq 1\}$ by empty stack method. Give the graphical representation of the PDA obtained.	<i>CO3</i>	<i>PO3</i>	10M
	b)	Design DPDA for the language $L=\{WcW^R, W \in (a+b)^*\}$ by empty stack.	<i>CO3</i>	<i>PO3</i>	10M
UNIT - V					
7	a)	Designing Turing Machine for $L= \{0^n 1^n, n \geq 1\}$	<i>CO3</i>	<i>PO3</i>	10M
	b)	Design TM which accepts the set of all palindromes over $\{0, 1\}$	<i>CO3</i>	<i>PO3</i>	10M

SUPPLEMENTARY EXAMS 2024