

B.M.S. College of Engineering, Bengaluru-560019

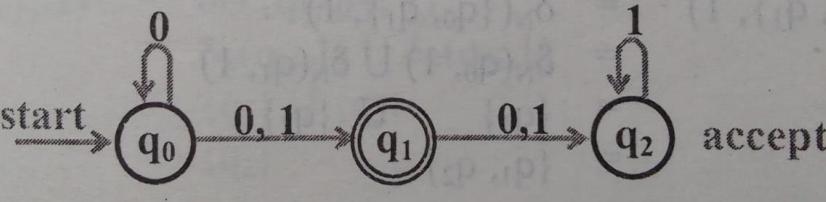
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

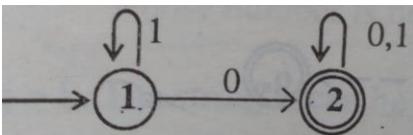
Programme: B.E.

Semester: IV

Branch: Computer Science and Engineering


Duration: 3 hrs.

Course Code: 19CS4PCTFC


Max Marks: 100

Course: Theoretical Foundations of Computations

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																		
1	a)	Construct a DFA to accept strings of a's and b's having even number of a's and even number of b's.	<i>CO1</i>	<i>PO1</i>	8																		
	b)	Construct DFA's accepting the following strings over the alphabet set $\Sigma = \{a,b\}$ i. Not more than three a's in the strings ii. The set of all strings except those which ends with 'abb' iii. Set of all strings containing the substring 'abb'	<i>CO3</i>	<i>PO3</i>	8																		
	c)	Write the formal definition of DFA.	<i>CO1</i>	<i>PO1</i>	4																		
OR																							
2	a)	i. Design a deterministic finite automaton which accepts a string containing "the" anywhere in a string of {a-z} ii. Design a deterministic finite automaton which accepts a string containing "ing" at the end of a string in a string of {a-z}	<i>CO1</i>	<i>PO1</i>	8																		
	b)	Convert the below NFA to its equivalent DFA.	<i>CO3</i>	<i>PO3</i>	8																		
	c)	 Write the formal definition of ϵ - NFA.	<i>CO1</i>	<i>PO1</i>	4																		
UNIT - II																							
3	a)	Minimize the following DFA using table filling algorithm.	<i>CO2</i>	<i>PO2</i>	8																		
		<table border="1" style="border-collapse: collapse; text-align: center;"> <tr> <td>δ</td><td>a</td><td>b</td></tr> <tr> <td>$\rightarrow A$</td><td>B</td><td>E</td></tr> <tr> <td>B</td><td>C</td><td>F</td></tr> <tr> <td>*C</td><td>D</td><td>H</td></tr> <tr> <td>D</td><td>E</td><td>H</td></tr> <tr> <td>E</td><td>F</td><td>I</td></tr> </table>	δ	a	b	$\rightarrow A$	B	E	B	C	F	*C	D	H	D	E	H	E	F	I			
δ	a	b																					
$\rightarrow A$	B	E																					
B	C	F																					
*C	D	H																					
D	E	H																					
E	F	I																					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<table border="1"> <tr><td>*F</td><td>G</td><td>B</td></tr> <tr><td>G</td><td>H</td><td>B</td></tr> <tr><td>H</td><td>I</td><td>C</td></tr> <tr><td>*I</td><td>A</td><td>E</td></tr> </table>	*F	G	B	G	H	B	H	I	C	*I	A	E			
*F	G	B															
G	H	B															
H	I	C															
*I	A	E															
	b)	Obtain Regular Expressions (RE) for the following languages i. All strings containing at least one a and at least one b where $\Sigma = \{a,b,c\}$ ii. All strings that do not end with 01 where $\Sigma = \{0,1\}$ iii. All strings whose length is a multiple of 3 given $\Sigma = \{a,b\}$.	CO3	PO3	8												
	c)	Elaborate on homomorphism and inverse homomorphism properties of a regular expression.	CO1	PO1	4												
		OR															
4	a)	Obtain a regular expression for the FA shown below using Kleen's theorem. 	CO2	PO2	8												
	b)	i. Obtain a Regular Expression for Language $L = \{w: \text{string ends with ab or ba where } w \in \{a,b\}\}$ ii. Obtain an NFA for the regular expression $a^* + b^* + c^*$	CO3	PO3	8												
	c)	Show that $L = \{a^{n!} \mid n \geq 0\}$ is not regular.	CO1	PO1	4												
		UNIT - III															
5	a)	Obtain a grammar to generate the language $L = \{a^n b^m \mid n \geq 0, m > n\}$	CO2	PO2	7												
	b)	Consider the grammar $E \rightarrow E+E \mid E^*E \mid (E) \mid I$ $I \rightarrow a \mid b \mid c$ Obtain the leftmost and right most derivation for $a+b^*c$.	CO2	PO2	5												
	c)	Convert the following grammar to CNF. $S \rightarrow aXbX, X \rightarrow aY \mid bY \mid \epsilon, Y \rightarrow X \mid c$	CO1	PO1	8												
		OR															
6	a)	Obtain CFG for $L = \{w \mid n_a(w) > n_b(w), \Sigma = \{a,b\}\}$	CO2	PO2	8												
	b)	Given the grammar $S \rightarrow aS \mid aSbS \mid \epsilon$, check whether it is ambiguous or not.	CO2	PO2	5												
	c)	Eliminate Useless symbols in the grammar $G = (V, T, P, S)$ $V = \{S, A, B, C, D, E\}, T = \{a, b, d\}, S = S$ $P = \{S \rightarrow aA \mid bB, A \rightarrow aA \mid a, B \rightarrow bB, D \rightarrow ab \mid Ea, E \rightarrow aC \mid d\}$	CO1	PO1	7												

UNIT - IV					
7	a)	Obtain a PDA to accept the language $L=\{w w \in (a,b)^* \text{ and } n_a(w) > n_b(w)\}$	<i>CO3</i>	<i>PO3</i>	10
	b)	Obtain the corresponding PDA for the grammar given below. $S \rightarrow aABC$ $A \rightarrow aB a$ $B \rightarrow bA b$ $C \rightarrow a$ Give the instantaneous description of aabba.	<i>CO2</i>	<i>PO2</i>	10
OR					
8	a)	Obtain a PDA to accept a string of balanced parenthesis. The parentheses to be considered are (,), [,].	<i>CO3</i>	<i>PO3</i>	10
	b)	Obtain a CFG for the given PDA. $\delta(q_0, a, Z) = (q_0, AZ)$ $\delta(q_0, a, A) = (q_0, A)$ $\delta(q_0, b, A) = (q_1, \epsilon)$ $\delta(q_1, \epsilon, Z) = (q_2, \epsilon)$	<i>CO2</i>	<i>PO2</i>	10
UNIT - V					
9	a)	Design a Turing Machine for $L=\{ww^R\}$. Trace and show the traversal for the string abbaabba.	<i>CO2</i>	<i>PO2</i>	10
	b)	Design a Turing Machine for $L=\{a^n b^n\}$. Show the tracing for string aaabbb.	<i>CO2</i>	<i>PO2</i>	10
OR					
10	a)	Design a Turing Machine for $L=\{0^n 1^n 2^n, n \geq 1\}$. Demonstrate its correctness by tracing it for the string 001122.	<i>CO2</i>	<i>PO2</i>	10
	b)	Find whether the below lists have a post correspondence solution or not. i. $M = (abb, aa, aaa)$ and $N = (bba, aaa, aa)$ ii. $A = (1, 10111, 10)$ and $B = (111, 10, 0)$	<i>CO2</i>	<i>PO2</i>	10
