

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

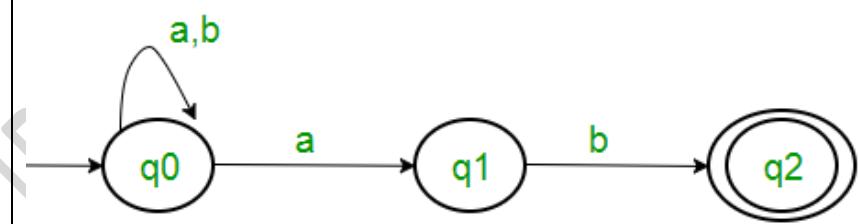
Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Branch: Computer Science & Engineering

Course Code: 22CS4PCTFC


Course: Theoretical Foundations of Computations

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			
			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Design a Deterministic Finite Automata (DFA) for the following i. To accept the binary numbers which are divisible by 3 over the alphabet set $\Sigma = \{0,1\}$ ii. To accept set of strings ending with ab or ba over the alphabet set $\Sigma = \{a, b\}$ Give the formal definition of the designed DFA.	CO3	PO3	10
		b)	Construct NFA (Non-deterministic Finite Automata) for the following, i. The language $\{ w \in (0+1)^* \mid w \text{ ends with } 00 \}$ ii. The language $\{ w \in (0+1)^* \mid w \text{ contains the substring } 0101 \}$	CO3	PO3	5
		c)	Convert following NFA to DFA using subset construction method 	CO2	PO2	5
			UNIT - II			
	2	a)	Design Regular Expressions (RE) for the following languages over the alphabet set $\Sigma = \{a,b\}$ i. Set of string of a's and b's having substring "aa" ii. Strings of a's and b's whose lengths are multiples of 3 iii. Strings that do not end with ab iv. Strings of even lengths v. Strings of a's and b's with alternate a's and b's	CO3	PO3	10
		b)	Show that the language $L = \{ w \in \Sigma^* \mid n_a(w) < n_b(w) \text{ where } \Sigma = \{a,b\} \}$ is not regular using pumping lemma.	CO2	PO2	5

	c)	Show that regular languages are closed under Union and Reversal with an example.	CO2	PO2	5																											
		OR																														
3	a)	Design minimized DFA using the concept of table filling algorithm for the DFA given below. Note: Show the minimization steps completely and clearly.	CO3	PO3	10																											
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td></td> <td style="text-align: center;">0</td> <td style="text-align: center;">1</td> </tr> <tr> <td style="text-align: center;">→ A</td> <td style="text-align: center;">B</td> <td style="text-align: center;">F</td> </tr> <tr> <td style="text-align: center;">B</td> <td style="text-align: center;">G</td> <td style="text-align: center;">C</td> </tr> <tr> <td style="text-align: center;">*C</td> <td style="text-align: center;">A</td> <td style="text-align: center;">C</td> </tr> <tr> <td style="text-align: center;">D</td> <td style="text-align: center;">C</td> <td style="text-align: center;">G</td> </tr> <tr> <td style="text-align: center;">E</td> <td style="text-align: center;">H</td> <td style="text-align: center;">F</td> </tr> <tr> <td style="text-align: center;">F</td> <td style="text-align: center;">C</td> <td style="text-align: center;">G</td> </tr> <tr> <td style="text-align: center;">G</td> <td style="text-align: center;">G</td> <td style="text-align: center;">E</td> </tr> <tr> <td style="text-align: center;">H</td> <td style="text-align: center;">G</td> <td style="text-align: center;">C</td> </tr> </table>		0	1	→ A	B	F	B	G	C	* C	A	C	D	C	G	E	H	F	F	C	G	G	G	E	H	G	C			
	0	1																														
→ A	B	F																														
B	G	C																														
* C	A	C																														
D	C	G																														
E	H	F																														
F	C	G																														
G	G	E																														
H	G	C																														
	b)	Convert the following DFA to a Regular Expression (RE), using the Kleene's technique.	CO3	PO3	10																											
		<pre> graph LR start(()) --> q0((q0)) q0 -- 1 --> q0 q0 -- 0 --> q1((q1)) q1 -- 1 --> q1 q1 -- 0 --> q2((q2)) q2 -- 0 --> q2 q2 -- 1 --> q1 </pre>																														
		UNIT - III																														
4	a)	Design Context Free Grammar (CFG) to accept i. $L = \{ a^n b^{n-4}, n \geq 4 \}$ ii. $L = \{ a^{n+1} b^n, n \geq 0 \}$ iii. $L = \{ 0^i 1^j, i \neq j, i \geq 0, j \geq 0 \}$ iv. $L = \{ a^n b^m c^k, n+2m = k, n \geq 0, m \geq 0 \}$	CO3	PO3	10																											
	b)	Eliminate all unit productions from the Grammar $G = (V, T, P, S)$, $V = \{S, A, C\}$, $T = \{0, 1, 2\}$ $P = \{$ $S \rightarrow A0 \mid C$ $C \rightarrow A \mid 11$ $A \rightarrow 0 \mid 12 \mid C$ $\}$	CO2	PO2	5																											
	c)	Convert following grammar to Chomsky Normal Form (CNF) $S \rightarrow ABA$ $A \rightarrow Aa \mid \epsilon$	CO2	PO2	5																											
		OR																														
5	a)	Convert the below grammar to Greibach Normal Form (GNF). $S \rightarrow AA \mid 0$ $A \rightarrow SS \mid 1$ Note: Show the solving steps completely and clearly.	CO2	PO2	10																											

	b)	Eliminate Useless symbols in the grammar $G=(V, T, P, S)$, $V=\{S, A, B, C, D, F\}$, $T= \{ a, b, d \}$, $S= S$ $P=\{S \rightarrow aA \mid bB, A \rightarrow aA \mid a ,$ $B \rightarrow bB , D \rightarrow ab \mid Fa , F \rightarrow aC \mid d\}$	CO2	PO2	5
	c)	Eliminate Epsilon (ϵ)-Productions from the grammar $S \rightarrow BCCB$ $C \rightarrow 0C2 \mid 2C0 \mid \epsilon$ $B \rightarrow CB \mid 1B \mid \epsilon$	CO2	PO2	5
UNIT - IV					
6	a)	Design Deterministic Push Down Automata (PDA) for the language $L=\{W, W \in (0+1)^* \text{ and } n_0(w) > n_1(w)\}$ by final state. Give the graphical representation of the PDA obtained. Show instantaneous description for the string 01100	CO3	PO3	10
	b)	Design CFG that generates the language accepted by the following PDA $P=(Q, \Sigma, \Gamma, q_0, Z_0, \delta, F)$ $Q = \{ q_0, q_1 \}$ $\Sigma = \{a, b\}$ $\Gamma = \{A, Z\}$ $q_0 = q_0$ $Z_0 = Z$ $F = \{q_1\}$ $\delta(q_0, a, Z)=(q_0, AZ)$ $\delta(q_0, b, A)=(q_0, AA)$ $\delta(q_0, a, A)=(q_1, \epsilon)$	CO3	PO3	10
UNIT - V					
7	a)	Design Turing Machine (TM) to compute the function, which is called monus or proper subtraction and is defined by $(m-n) = \max (m-n, 0)$ Give the formal definition of the obtained TM.	CO3	PO3	10
	b)	Describe Multi-tape Turing Machine and Multi-stack Turing Machine.	CO1	PO1	6
	c)	Considering the following lists $M = (B, A, CA, ABC)$ and $N = (CA, AB, A, C)$ find the Post Correspondence Solution.	CO1	PO1	4
