

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

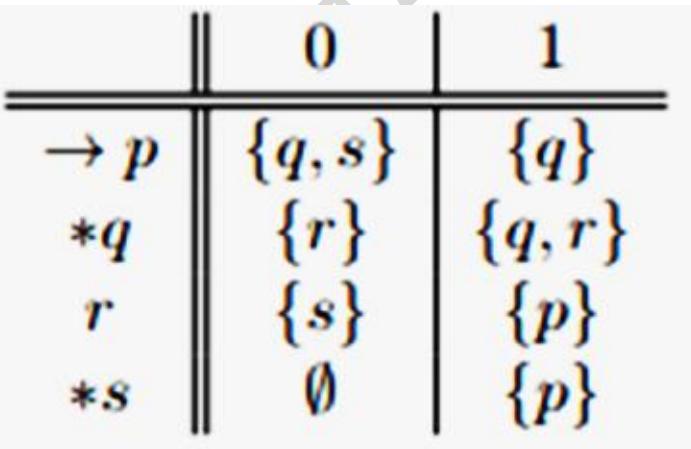
Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 22CS4PCTFC


Course: Theoretical Foundations of Computations

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks															
1	a)	<p>Construct Deterministic Finite Automata (DFA) accepting the following strings over the alphabet set $\Sigma = \{0,1\}$</p> <ul style="list-style-type: none"> i. The set of all strings ending with 00 ii. The set of all strings with three consecutive 0's atleast once iii. Set of all strings beginning with 00 	CO3	PO 3	10															
	b)	Convert the following Non- Deterministic Finite Automata (NFA) to a DFA	CO2	PO2	5															
	c)	<table border="1" data-bbox="341 1179 1032 1628"> <tr> <td></td> <td>0</td> <td>1</td> </tr> <tr> <td>$\rightarrow p$</td> <td>$\{q, s\}$</td> <td>$\{q\}$</td> </tr> <tr> <td>$*q$</td> <td>$\{r\}$</td> <td>$\{q, r\}$</td> </tr> <tr> <td>r</td> <td>$\{s\}$</td> <td>$\{p\}$</td> </tr> <tr> <td>$*s$</td> <td>\emptyset</td> <td>$\{p\}$</td> </tr> </table>		0	1	$\rightarrow p$	$\{q, s\}$	$\{q\}$	$*q$	$\{r\}$	$\{q, r\}$	r	$\{s\}$	$\{p\}$	$*s$	\emptyset	$\{p\}$	CO3	PO3	5
	0	1																		
$\rightarrow p$	$\{q, s\}$	$\{q\}$																		
$*q$	$\{r\}$	$\{q, r\}$																		
r	$\{s\}$	$\{p\}$																		
$*s$	\emptyset	$\{p\}$																		
UNIT - II																				
2	a)	<p>Design Regular Expressions (RE) for the following language over $\Sigma = \{a, b\}$</p> <ul style="list-style-type: none"> i. Set of string of a's and b's ending with string "abb" ii. Set of string of a's and b's starting with string "ab" iii. Set of string of a's and b's having substring "aa" 	CO3	PO3	10															

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		iv. Set of strings consisting of atleast one “a” followed by string consisting of atleast one “b” v. Set of strings that contain exactly three a’s																																	
	b)	Convert the following DFA to a RE, using the Kleene’s technique: <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td></td><td>0</td><td>1</td></tr> <tr> <td>→ p</td><td>q</td><td>p</td></tr> <tr> <td>*q</td><td>q</td><td>q</td></tr> </table>		0	1	→ p	q	p	*q	q	q	CO3	PO3	10																					
	0	1																																	
→ p	q	p																																	
*q	q	q																																	
		OR																																	
3	a)	Design minimized DFA using the concept of table filling algorithm for the DFA given below. <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td></td><td>0</td><td>1</td></tr> <tr> <td>→ A</td><td>B</td><td>E</td></tr> <tr> <td>B</td><td>C</td><td>F</td></tr> <tr> <td>*C</td><td>D</td><td>H</td></tr> <tr> <td>D</td><td>E</td><td>H</td></tr> <tr> <td>E</td><td>F</td><td>I</td></tr> <tr> <td>*F</td><td>G</td><td>B</td></tr> <tr> <td>G</td><td>H</td><td>B</td></tr> <tr> <td>H</td><td>I</td><td>C</td></tr> <tr> <td>*I</td><td>A</td><td>E</td></tr> </table>		0	1	→ A	B	E	B	C	F	*C	D	H	D	E	H	E	F	I	*F	G	B	G	H	B	H	I	C	*I	A	E	CO3	PO3	10
	0	1																																	
→ A	B	E																																	
B	C	F																																	
*C	D	H																																	
D	E	H																																	
E	F	I																																	
*F	G	B																																	
G	H	B																																	
H	I	C																																	
*I	A	E																																	
	b)	Using pumping lemma show that the language $L = \{a^n b^n, n \geq 0\}$ is not regular.	CO2	PO2	5																														
	c)	Show that regular languages are closed under Intersection with an example.	CO1	PO1	5																														
		UNIT - III																																	
4	a)	Design Context Free Grammar (CFG) to accept following languages i. $L = \{a^n b^n, n \geq 0\}$ ii. $L = \{a^{n+1} b^n, n \geq 0\}$ iii. $L = \{a^n b^{2n}, n \geq 0\}$ iv. $L = \{w, w \bmod 3 > 0, \text{ where } w \in a^*\}$	CO3	PO3	10																														
	b)	Convert below grammar to Chomsky Normal Form (CNF). $S \rightarrow aXbX, X \rightarrow aY \mid bY \mid \epsilon, Y \rightarrow X \mid c$	CO2	PO2	10																														
		OR																																	
5	a)	Eliminate useless symbols in the grammar given below: $\{S \rightarrow aA \mid bB, A \rightarrow aA \mid a, B \rightarrow bB, D \rightarrow ab \mid Ea, E \rightarrow aC \mid d\}$	CO2	PO2	10																														
	b)	Eliminate unit productions in the below grammar $S \rightarrow AB$ $A \rightarrow a$ $B \rightarrow C \mid b$	CO2	PO2	5																														

		$C \rightarrow D$ $D \rightarrow E \mid bC$ $E \rightarrow d \mid Ab$			
	c)	Show that the below grammar is ambiguous. $S \rightarrow iCtS \mid iCtSeS \mid a \quad , \quad C \rightarrow b$	CO1	PO1	5
		UNIT - IV			
6	a)	Design Push Down Automata (PDA) for the language $L=\{WcW^R \mid W \text{ is a string of a's and b's}\}$. Show the Instantaneous Description for the string “aabcbaa”	CO3	PO3	10
	b)	Obtain CFG that generates the language accepted by the PDA given below $P=(Q, \Sigma, \Gamma, q_0, Z_0, \delta, F)$ $Q = \{ q_0, q_1, q_2 \}$ $\Sigma = \{a, b\}$ $\Gamma = \{A, Z\}$ $q_0 = q_0$ $Z_0 = Z$ $F = \{q_2\}$ $\delta(q_0, a, Z) = (q_0, AZ)$ $\delta(q_0, a, A) = (q_0, A)$ $\delta(q_0, b, A) = (q_1, \epsilon)$ $\delta(q_1, \epsilon, Z) = (q_2, \epsilon)$	CO2	PO2	10
		UNIT - V			
7	a)	Design Turing Machine to compute the function, which is called monus or proper subtraction and is defined by $(m-n) = \max (m-n, 0)$ Give the formal definition of the obtained TM.	CO3	PO3	10
	b)	Describe “Undecidable” problem with an example.	CO1	PO1	5
	c)	Describe Multitape Turning Machine.	CO1	PO1	5
