

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

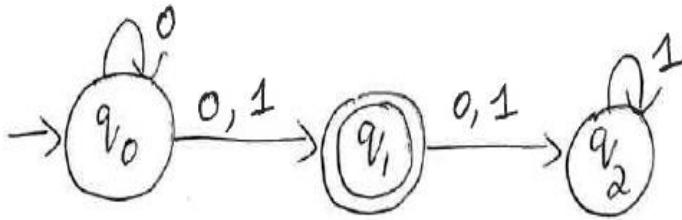
Programme: B.E.

Branch: Computer Science & Engineering

Course Code: 22CS4PCTFC

Course: Theoretical Foundations of Computations

Semester: IV


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Construct a Deterministic Finite Automata (DFA) to accept a string of a's and b's having not more than three a's	CO3	PO3	5
	b)	List the applications of Automata and explain	CO1	PO2	5
	c)	Convert the given Non-Deterministic Finite Automata (NFA) to its equivalent DFA	CO2	PO2	10
UNIT - II					
2	a)	Obtain regular expression to accept the strings of a's and b's such that every block of four consecutive symbols containing at least two b's.	CO1	PO1	5
	b)	Using Pumping Lemma, show that the language $L = \{a^{n!} \mid n \geq 0\}$ is not regular. Note: $n!$ represents n factorial.	CO2	PO2	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>For the given transition table, obtain the minimized DFA for the following:</p> <table border="1"> <tr> <td>δ</td><td>0</td><td>1</td></tr> <tr> <td>\rightarrow A</td><td>B</td><td>A</td></tr> <tr> <td>B</td><td>A</td><td>C</td></tr> <tr> <td>C</td><td>D</td><td>B</td></tr> <tr> <td>*D</td><td>D</td><td>A</td></tr> <tr> <td>E</td><td>D</td><td>F</td></tr> <tr> <td>F</td><td>G</td><td>E</td></tr> <tr> <td>G</td><td>F</td><td>G</td></tr> <tr> <td>H</td><td>G</td><td>D</td></tr> </table>	δ	0	1	\rightarrow A	B	A	B	A	C	C	D	B	*D	D	A	E	D	F	F	G	E	G	F	G	H	G	D	CO1	PO1	9
δ	0	1																														
\rightarrow A	B	A																														
B	A	C																														
C	D	B																														
*D	D	A																														
E	D	F																														
F	G	E																														
G	F	G																														
H	G	D																														
		OR																														
3	a)	<p>Obtain Regular Expressions (RE) for the following languages over the alphabet set $\Sigma = \{a, b\}$</p> <ol style="list-style-type: none"> Set of string of a's and b's having substring "aa" Strings of a's and b's whose lengths are multiples of 3 Strings that do not end with ab 	CO1	PO1	5																											
	b)	<p>Analyze the following NFA and obtain the regular expression using Kleene's technique for the following DFA.</p>	CO2	PO2	10																											
	c)	Show that $L = \{a^i b^j \mid i > j\}$ is NOT regular using pumping lemma	CO2	PO2	5																											
		UNIT - III																														
4	a)	<p>Obtain a grammar to generate a language consisting of all non-palindromes over $\{a, b\}$. Give the derivation for the string ababba which is not a palindrome.</p>	CO2	PO2	6																											
	b)	<p>Show that the following grammar is ambiguous.</p> $\begin{aligned} S &\rightarrow AB \mid aaB \\ A &\rightarrow a \mid Aa \\ B &\rightarrow b \end{aligned}$	CO2	PO2	4																											
	c)	<p>Convert the following grammar to its corresponding Chomsky Normal Form (CNF).</p> $\begin{aligned} S &\rightarrow 0A \mid 1B \\ A &\rightarrow 0AA \mid 1S \mid 1 \\ B &\rightarrow 1BB \mid 0S \mid 0 \end{aligned}$	CO2	PO2	10																											

		OR			
5	a)	Show that the following grammar is ambiguous over $w= (() ())$ $S \rightarrow SS \mid (S) \mid \epsilon$	<i>CO2</i>	<i>PO2</i>	5
	b)	Eliminate useless symbols for the following grammar $S \rightarrow aA \mid a \mid Bb \mid cC$ $A \rightarrow aB$ $B \rightarrow a \mid Aa$ $C \rightarrow cCD$ $D \rightarrow ddd$	<i>CO2</i>	<i>PO2</i>	8
	c)	Analyze the following grammar and eliminate all unit productions from the grammar. $S \rightarrow Aa \mid B \mid Ca$ $B \rightarrow aB \mid b$ $C \rightarrow Db \mid D$ $D \rightarrow E \mid d$ $E \rightarrow ab$	<i>CO2</i>	<i>PO2</i>	7
UNIT - IV					
6	a)	Design Push Down Automata (PDA) for the language $L=\{a^n b^{2n} \mid n \geq 1\}$. Write an Instantaneous Description for the string aabb	<i>CO3</i>	<i>PO3</i>	5
	b)	Convert the following grammar to PDA $S \rightarrow aABB \mid aAA$ $A \rightarrow aBB \mid a$ $B \rightarrow bBB \mid b$ $C \rightarrow a$	<i>CO2</i>	<i>PO2</i>	10
	c)	Show Context Free Languages (CFL) are not closed under Intersection	<i>CO2</i>	<i>PO2</i>	5
UNIT - V					
7	a)	Differentiate between Recursive Language and Recursively Enumerable Languages	<i>CO2</i>	<i>PO2</i>	5
	b)	Obtain a Turing Machine which accepts the language $L=\{0^n 1^n \mid n \geq 1\}$	<i>CO3</i>	<i>PO3</i>	10
	c)	Describe undecidable problems	<i>CO1</i>	<i>PO1</i>	5
