

B.M.S. College of Engineering, Bengaluru-560019

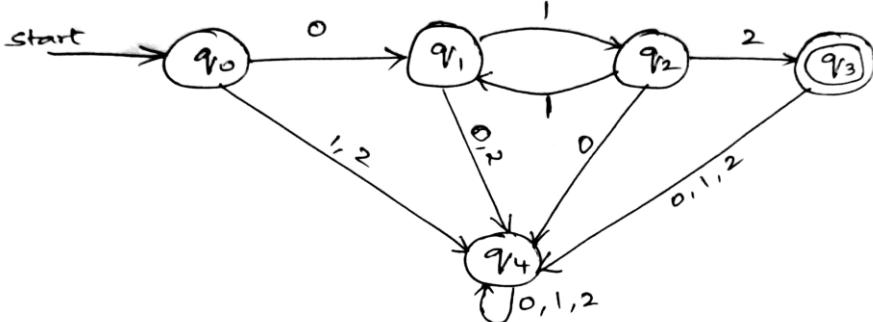
Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 22CS4PCTFC


Course: Theoretical Foundations of Computations

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			CO	PO	Marks
1	a)	Define Finite Automata. Demonstrate the same using an ON/OFF Switch.	1	1	5
	b)	Analyze the given DFA. Draw the transition table and write the language equivalent. Explain.	1	2	7
	c)	<p>Obtain an ϵ-NFA which accepts strings consisting of zero or more a's followed by zero or more b's followed by zero or more c's.</p>	1	3	8
		OR			
2	a)	Design DFA for accepting binary strings that i) start with 00 ii) having 001 iii) ending with 01 iv) not having 111 v) whose value is multiple of 2	3	3	10
	b)	Design NFA for accepting strings that have 1 in second last position. Convert the same to DFA.	1, 3	1,3	10
			UNIT - II		
			1	1	6
3	a)	List the notations used to represent regular expressions. Demonstrate the same with an example.			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Analyze the given Finite Automata (FA) and obtain the corresponding regular expression.	1	2	6																											
	i.																															
	ii.																															
	c)	Obtain an Non- Deterministic Finite Automata (NFA) for the regular expression $(a+b)^*aa(a+b)^*$. Show the step by step procedure involved in constructing the NFA.	1	3	8																											
		OR																														
4	a)	Explain closure property – complementation with an example.	1	1	6																											
	b)	Write the regular expressions for the following. <ol style="list-style-type: none"> $L = \{w : n_a(w) \bmod 3 = 0 \text{ where } w = (a, b)^*\}$ $L = \{a^n b^m \mid m \geq 1, n \geq 1, nm \geq 3\}$ 	1	1	6																											
	c)	Obtain the distinguishable table for the automaton and then minimize the states of the following DFA.	1	3	8																											
		<table border="1"> <thead> <tr> <th>δ</th><th>a</th><th>b</th></tr> </thead> <tbody> <tr> <td>\xrightarrow{A}</td><td>B</td><td>F</td></tr> <tr> <td>B</td><td>G</td><td>C</td></tr> <tr> <td>*C</td><td>A</td><td>C</td></tr> <tr> <td>D</td><td>C</td><td>G</td></tr> <tr> <td>E</td><td>H</td><td>F</td></tr> <tr> <td>F</td><td>C</td><td>G</td></tr> <tr> <td>G</td><td>G</td><td>E</td></tr> <tr> <td>H</td><td>G</td><td>C</td></tr> </tbody> </table>	δ	a	b	\xrightarrow{A}	B	F	B	G	C	*C	A	C	D	C	G	E	H	F	F	C	G	G	G	E	H	G	C			
δ	a	b																														
\xrightarrow{A}	B	F																														
B	G	C																														
*C	A	C																														
D	C	G																														
E	H	F																														
F	C	G																														
G	G	E																														
H	G	C																														
		UNIT - III																														
5	a)	Show that the below grammar is ambiguous. $S \rightarrow iCtS \mid iCtSeS \mid a, \quad C \rightarrow b$	1	1	4																											
	b)	Consider the following context-free grammars. $G1: S \rightarrow aS \mid B, \quad B \rightarrow b \mid bB$	1	2	8																											

		G2: $S \rightarrow aA \mid bB$, $A \rightarrow aA \mid B \mid \epsilon$, $B \rightarrow bB \mid \epsilon$ Write the Context free language generated by G1 and G2			
	c)	Analyze the given language and obtain a grammar to generate the following languages: i. $L = \{a^{n+2}b^m \mid n \geq 0 \text{ and } m > n\}$ ii. $L = \{a^n b^m c^k \mid n \geq 0 \text{ and } m > n\}$	2	2	8
		OR			
6	a)	Eliminate useless symbols in the grammar given below: $\{S \rightarrow aA \mid bB, A \rightarrow aA \mid a, B \rightarrow bB, D \rightarrow ab \mid Ea, E \rightarrow aC \mid d\}$	3	1	10
	c)	Consider the grammar. $S \rightarrow 0A \mid 1B$ $A \rightarrow 0AA \mid 1S \mid 1$ $B \rightarrow 1BB \mid 0S \mid 0$ Obtain the grammar in Chomsky Normal Form (CNF).	1	3	10
		UNIT - IV			
7	a)	State the pumping lemma for Context Free languages. Explain with an example.	2	2	5
	b)	Check if the Push Down Automata (PDA) to accept the language $L(M) = \{w \mid w (a+b)^*\}$ and $n_a(w) = n_b(w)$ is deterministic or non-deterministic?	3	3	5
	c)	For the given grammar, obtain the corresponding PDA. $S \rightarrow aABB \mid aAA$ $A \rightarrow aBB \mid a$ $B \rightarrow bBB \mid A$ $C \rightarrow a$	1	1	10
		OR			
8	a)	Design PDA for accepting $a^n b^{2n}$ such that $n \geq 1$.	3	3	10
	b)	Design PDA to accept $a^n b^n$. Also check whether the PDA is DPDA or NPDA.	3	3	10
		UNIT - V			
9	a)	Discuss about the various components of Turing machine model.	3	3	5
	b)	Find whether the lists given here have a Post Correspondence Solution. $M = (abb, aa, aaa)$ and $N = (bba, aaa, aa)$	3	3	5
	c)	Design a Turing machine to accept the language $L(M) = \{0^n 1^n 2^n \mid n \geq 1\}$	3	3	10
		OR			

	10	a)	Design TM that adds two numbers. Assume numbers are stored on tape as sequence of 1's and separated by a 0.	3	3	10
		b)	Design TM that accepts palindrome strings of a and b.	3	3	10

B.M.S.C.E. - ODD SEM 2024-25