

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science & Engineering

Course Code: 22CS4PCTFC

Course: Theoretical Foundations of Computations

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer FIVE full questions
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Construct NFA (Non-deterministic Finite Automata) for the following,</p> <p>i. The language $\{ w \in (0+1)^* \mid w \text{ ends with } 00 \}$</p> <p>ii. The language $\{ w \in (0+1)^* \mid w \text{ contains the substring } 0101 \}$</p>	CO1	PO1	6
	b)	<p>Design a DFA (Deterministic Finite Automata) for each of the following languages.</p> <p>i) $L = \{ w \in \{0, 1\}^* \mid w \text{ does not have } 001 \text{ as a substring} \}$.</p> <p>ii) $L = \{w \mid n_a(w) \text{ are odd and } n_b(w) \text{ are even} \}$</p>	CO3	PO3	6
	c)	<p>Construct DFA for the following ϵ -NFA</p> <pre> graph LR q0((q0)) -- 1 --> q0 q0 -- ε --> q1((q1)) q1 -- 0 --> q2(((q2))) q1 -- ε --> q3((q3)) q2 -- 1 --> q4(((q4))) q3 -- 0 --> q4 q4 -- 0 --> q5((q5)) q4 -- ε --> q5 q5 -- 1 --> q2 </pre>	CO1	PO1	8

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
2	a)	Minimize the following DFA	CO1	PO1	10
	b)	Apply state elimination method to construct a Regular Expression (RE) for the following Finite state machine	CO1	PO1	6
	c)	Apply Pumping Lemma theorem to show that the language, $L = \{WW^R \mid w \in \{0,1\}^*\}$ is not regular	CO1	PO1	4
OR					
3	a)	Prove that the regular languages are closed under complement, intersection and difference.	CO2	PO2	8
	b)	Write regular expressions for the following languages i) $L = \{a^n b^m \mid m \geq 1, n \geq 1, mn \geq 3\}$. ii) $L = \{w \in \{0, 1\}^* \mid w \text{ has } 001 \text{ as a substring}\}$ iii) $L = \{w \in \{0, 1\}^* \mid w \bmod 3 = 0\}$	CO1	PO1	6
	c)	State the applications of Regular Expressions.	CO1	PO1	6
UNIT - III					
4	a)	Construct Context Free Grammar (CFG) for the following languages i) $L = \{0^{2n} 1^m \mid m, n \geq 0\}$ ii) $L = \{0^i 1^j 2^k \mid i=j \text{ or } j=k\}$	CO3	PO3	6

	b)	Check whether the given grammar is ambiguous or not for the string w=ibtibtaea $S \rightarrow iCtS \mid iCtSeS \mid a$ $C \rightarrow b$	CO2	PO2	6
	c)	Simplify the grammar by removing useless symbols $S \rightarrow AS \mid CD \mid SB \mid A$ $A \rightarrow aA \mid a$ $B \rightarrow bB \mid bC$ $C \rightarrow cB$ $D \rightarrow dD \mid d$	CO2	PO2	8
		OR			
5	a)	Convert the following grammar to Chomsky Normal Form (CNF). $S \rightarrow ABC$ $A \rightarrow aC \mid D$ $B \rightarrow bB \mid \epsilon \mid A$ $C \rightarrow Ac \mid \epsilon \mid Cc$ $D \rightarrow aa$	CO2	PO2	12
	b)	Simplify the grammar by removing useless symbols $S \rightarrow aAa$ $A \rightarrow Sb \mid bCC \mid DaA$ $C \rightarrow abb \mid DD$ $D \rightarrow aDa$ $E \rightarrow aC$	CO2	PO2	8
		UNIT - IV			
6	a)	Construct a Push Down Automat (PDA) to accept the language $L(M) = \{wCw^R \mid w \in (a+b)^*\}$, where W^R is reverse of W by a final state method	CO3	PO3	8
	b)	For the grammar: $S \rightarrow aABB \mid aAA$ $A \rightarrow aBB \mid a$ $B \rightarrow bBB \mid b$ $C \rightarrow b$ Obtain the corresponding PDA	CO2	PO2	6
	c)	Show that the language $L=\{a^n b^n c^n \mid n \geq 1\}$ is not Context Free Language using Pumping Lemma theorem.	CO2	PO2	6
		UNIT - V			
7	a)	Construct Turing Machine (TM) for $L=\{0^n 1^n \mid n \geq 1\}$. Show that the string 0011 is accepted	CO2	PO2	8
	b)	Explain Post Correspondence (PCP), and show that the PCP with list $x=(0, 01000, 01)$ and $y=(000, 01, 1)$ have a solution.	CO2	PO2	6
	c)	Explain different types of Turing Machine's (TM)	CO1	PO1	6
