

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

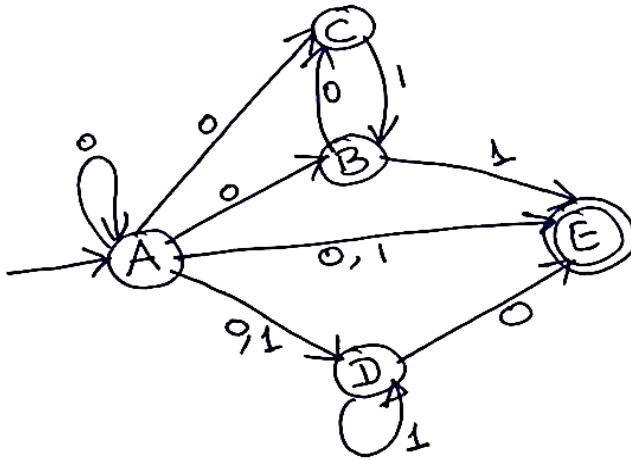
Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 23CS4PCTFC

Course: Theoretical Foundations of Computations

Semester: IV


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define Deterministic Finite Automata (DFA). Construct the DFA to accept the language $L = \{w \mid w \in \{a, b\}^* \text{ and } w \text{ ends with } abb\}$. Show the DFA transition function movements for the string abaabb	CO3	PO 3	10
	b)	For the Non-deterministic Finite Automata (NFA) shown below, using the subset construction method to find the equivalent DFA.	CO3	PO3	10
OR					
2	a)	Define NFA. Construct the NFA to accept the language $L = \{w \mid w \in \{a, b\}^* \text{ and } w \text{ has exactly two a's}\}$. Show the NFA transition function movements for the string babbab	CO3	PO3	6
	b)	Define ϵ -closure (A), where A is any state of the given ϵ -NFA (Epsilon NFA). Compute the ϵ -closure of the states {A, B, C, F} from the following ϵ -NFA.	CO1	PO1	4

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Convert following ϵ -NFA (Epsilon NFA) to DFA using Epsilon (ϵ) closure.	CO3	PO3
UNIT - II				
3	a)	Design Regular Expressions (RE) which generates the following languages over the alphabet set $\Sigma = \{0, 1\}$. <ol style="list-style-type: none"> Set of all strings ending with 1 and not containing 00. Set of all strings that do not contain the substring 01. 	CO3	PO3
	b)	Show that the regular languages are closed under Difference and Intersection operation.	CO2	PO2
	c)	State pumping lemma for regular languages. Use pumping lemma to show that the following language is not regular. $L = \{xx^R \mid x \in (0, 1)^*\}$.	CO2	PO2
UNIT - III				
4	a)	Design Context Free Grammar (CFG) to generate each of the following languages. <ol style="list-style-type: none"> $L = \{a^i b^j c^k \mid j=i+k\}$ $L = \{a^i b^j c^k \mid j=i \text{ or } j=k\}$ 	CO2	PO2
	b)	Let G be the CFG with productions set as $\{S \rightarrow S+S \mid S-S \mid S^*S \mid S/S \mid (S) \mid a\}$. Answer the following w.r.t $a+(a^*a)/a-a$. <ol style="list-style-type: none"> Give two left most derivations. Draw the derivation tree corresponds to each of the derivations in (i). How many distinct leftmost derivations are there? 	CO3	PO3

	c)	Convert following CFG to Greibach Normal Form (GNF). $S \rightarrow AaA \mid CA \mid BaB$ $A \rightarrow aaBa \mid CDA \mid aa \mid DC$ $B \rightarrow bB \mid bAB \mid bb \mid aS$ $C \rightarrow Ca \mid bC \mid D$ $D \rightarrow bD \mid \epsilon$	CO2	PO2	8
		OR			
5	a)	Write CFG to generate each of the following languages. i. $L = \{a^i b^j c^k \mid i < j\}$ ii. $L = \{a^i b^j c^k \mid j < k\}$	CO2	PO2	6
	b)	Answer the following i. Identify the language generated by the CFG with productions $S \rightarrow aSaSbS \mid aSbSaS \mid bSaSaS \mid \epsilon$ ii. Show that the CFG with productions $S \rightarrow aSb \mid aaSb \mid \epsilon$ is ambiguous.	CO2	PO2	6
	c)	Define Chomsky Normal Form (CNF). Convert following Grammar to CNF. $S \rightarrow ABA, A \rightarrow aA \mid \epsilon, B \rightarrow bB \mid \epsilon$	CO3	PO3	8
		UNIT – IV			
6	a)	Define Push Down Automata (PDA). Construct Nondeterministic Push Down Automata (NPDA) for the language $L = \{w \mid w \in (a,b)^* \text{ and } w \text{ is palindrome of even length}\}$ by final state method. Show the Instantaneous Description (ID) for the string abaaba is accepted by the NPDA constructed.	CO3	PO3	8
	b)	Convert following Grammar to PDA. Show the instantaneous description for the string “aabba” $S \rightarrow aABC$ $A \rightarrow aB \mid a$ $B \rightarrow bA \mid b$ $C \rightarrow a$	CO2	PO2	6
	c)	State pumping lemma for Context Free Languages (CFL). Apply pumping lemma to show the language $L = \{a^i b^j c^k \mid i < j < k\}$ is not a context free language.	CO2	PO2	6
		UNIT - V			
7	a)	Design the Turing Machine (TM) which accepts the set of all palindromes over the alphabet set $\Sigma = \{0, 1\}$. Trace the operation of the constructed TM on the string 100001	CO3	PO3	10
	b)	Define Post Correspondence Problem (PCP). Find a Post Correspondence Solution for following two lists given.	CO3	PO3	6

	List X	List Y
i	Xi	Yi
1	10	101
2	01	100
3	0	10
4	100	0
5	1	010

c) Describe Multitape Turing Machine.

CO1

PO1

4

B.M.S.C.E. - EVEN SEM 2023-24