

--	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Computer Science and Engineering

Duration: 3 hrs.

Course Code: 23CS4PCTFC

Max Marks: 100

Course: Theoretical Foundations of Computations

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks															
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a) Design Deterministic Finite Automata (DFA) accepting the following strings over the alphabet set $\Sigma = \{a, b\}$ <ul style="list-style-type: none"> i. Set of all strings with at least one 'a' and exactly two b's ii. Set of all strings not containing the substring 'abb' iii. The set of all strings either begins or ends or both with substring 'ab' 	CO3	PO3	10															
		b) Convert the following NFA to a DFA <table border="1" style="margin-left: 20px;"> <tr><td></td><td>0</td><td>1</td></tr> <tr><td>$\rightarrow p$</td><td>$\{q, s\}$</td><td>$\{q\}$</td></tr> <tr><td>$*q$</td><td>$\{r\}$</td><td>$\{q, r\}$</td></tr> <tr><td>r</td><td>$\{s\}$</td><td>$\{p\}$</td></tr> <tr><td>$*s$</td><td>\emptyset</td><td>$\{p\}$</td></tr> </table>		0	1	$\rightarrow p$	$\{q, s\}$	$\{q\}$	$*q$	$\{r\}$	$\{q, r\}$	r	$\{s\}$	$\{p\}$	$*s$	\emptyset	$\{p\}$	CO2	PO2	6
		0	1																	
$\rightarrow p$	$\{q, s\}$	$\{q\}$																		
$*q$	$\{r\}$	$\{q, r\}$																		
r	$\{s\}$	$\{p\}$																		
$*s$	\emptyset	$\{p\}$																		
	c) Design DFA for accepting binary strings which begin with 101 over the alphabet set $\Sigma = \{0, 1\}$	CO3	PO3	4																
	OR																			
2	a) Design Non-deterministic Finite Automata (NFA) for the following <ul style="list-style-type: none"> i. To accept the language which has 'aab' as substring over the alphabet set $\Sigma = \{a, b\}$ ii. To accept the language $L(aa^*(a+b))$ iii. To accept the language $L=\{a^3 \cup a^{2n}, n \geq 1\}$ iv. To accept the set of all strings whose second last symbol is 1 over the alphabet set $\Sigma = \{0, 1\}$ v. To accept all strings of 0's and 1's such that either second or third position from the end has 1 over the alphabet set $\Sigma = \{0, 1\}$ 	CO3	PO3	10																
		b) Given the following ϵ -NFA obtain its equivalent DFA using ϵ -closure.	CO2	PO2	6															

	c)	Design DFA for the following language over the alphabet set $\Sigma = \{a, b\}$ $L = \{w / n_a(w) \bmod 3 == 0\}$	CO3	PO3
UNIT - II				
3	a)	Obtain Regular Expressions (RE) for the following language over the alphabet set $\Sigma = \{a, b\}$ <ul style="list-style-type: none"> i. Strings of a's and b's containing no more than three a's ii. Strings of a's and b's such that fourth symbol from right end is 'a' and fifth symbol from right end is 'b' iii. Set of string of a's and b's having substring 'aa' iv. Strings of a's and b's ending with either 'ab' or 'ba' v. $L = \{a^n b^m, n \geq 1, m \geq 1, nm \geq 3\}$ 	CO2	PO2
	b)	Design minimized DFA using the concept of table filling algorithm for the DFA given below. Note: Show the minimization steps completely and clearly.	CO3	PO3
OR				
4)	a)	State the Pumping Lemma. Show that the languages given below are not regular. <ul style="list-style-type: none"> i. $L = \{a^n b^n, n \geq 0\}$ ii. $L = \{ww^R, w \in (0+1)^*\}$ 	CO2	PO2
	b)	Convert following Finite Automata to Regular Expression using Kleene's theorem by elaborating each step.	CO3	PO3

UNIT - III					
5	a)	Design Context Free Grammar (CFG) to accept i. $L = \{ a^n b^m, n \geq 0, m > n \}$ ii. $L = \{ a^n b^m c^k, (n+2m) == k, n \geq 0, m \geq 0 \}$ iii. $L = \{ w, n_a(w) == n_b(w)+1, w \in (a+b)^* \}$ iv. $L = \{ x, x \in (a+b)^* \text{ and } x \text{ is even } \}$ v. $L = \{ a^n b^n, n > 0 \}$	CO3	PO3	10
	b)	Eliminate useless symbols in the grammar given below: $S \rightarrow aA \mid bB$ $A \rightarrow aA \mid a$ $B \rightarrow bB$ $D \rightarrow ab \mid Ea$ $E \rightarrow aC \mid d$ Note: Show the solving steps completely and clearly.	CO2	PO2	10
OR					
6	a)	Convert following Grammar to Chomsky Normal Form (CNF) $S \rightarrow aXbX, X \rightarrow aY \mid bY \mid \epsilon, Y \rightarrow X \mid c$ Note: Show the solving steps completely and clearly.	CO2	PO2	10
	b)	i) Eliminate ϵ -Productions (Epsilon Productions) from the following grammar $S \rightarrow XY$ $X \rightarrow a$ $Y \rightarrow CD$ $C \rightarrow aC \mid \epsilon$ $D \rightarrow bDa \mid \epsilon$ ii) Eliminate all unit productions from the following Grammar $S \rightarrow AB$ $A \rightarrow a$ $B \rightarrow C \mid b$ $C \rightarrow D$ $D \rightarrow E \mid bC$ $E \rightarrow d \mid Ab$	CO2	PO2	10
UNIT - IV					
7	a)	Design Deterministic Push Down Automata (PDA) for the language $L = \{ W, W \in (a+b)^* \text{ and } n_a(w) > n_b(w) \}$ by final state method. Write the formal definition of the obtained PDA.	CO3	PO3	10
	b)	Show that the context-free languages (CFL) are closed under Concatenation and union operation with an example.	CO1	PO1	10

OR					
8	a)	Construct PDA to recognize the language $L=\{a^{2n}b^n, n \geq 1\}$ by empty stack method. Show the moves made by PDA for the string aaaabb and aabbb.	<i>CO2</i>	<i>PO2</i>	10
	b)	Show that the languages i. $L=\{W, W \in (0+1)^*, w \text{ is a perfect square}\}$ ii. $L=\{a^n b^n c^n, n \geq 0\}$ are not Context Free Languages (CFL).	<i>CO1</i>	<i>PO1</i>	10
UNIT - V					
9	a)	Give the formal definition of Turing Machine and design a TM for Design Turing Machine for $L= \{0^n 1^n, n \geq 1\}$.	<i>CO3</i>	<i>PO3</i>	10
	b)	Describe the Post correspondence problem. Determine whether the following (A, B) pair have a Post Correspondence solution or not. If yes, give the solution, if no, why. Justify. $A = \{b, bab^3, ba\}$ $B = \{b^3, ba, a\}$	<i>CO2</i>	<i>PO2</i>	10
OR					
10	a)	Design a Turing Machine for the language $L=\{WW^R, W \in (a+b)^*\}$.	<i>CO3</i>	<i>PO3</i>	10
	b)	Find a Post Correspondence Solution for following two lists given. i. $A = (b, babbb, ba)$ and $B = (bbb, ba, a)$ ii. $A = (100, 0, 1)$ and $B = (1, 100, 00)$	<i>CO2</i>	<i>PO2</i>	10
