

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Computer Science and Engineering

Duration: 3 hrs.

Course Code: 23CS4PCTFC / 22CS4PCTFC

Max Marks: 100

Course: Theoretical Foundation of Computations

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	List out the difference between DFA and NFA. Draw a deterministic finite automaton which accept a string containing “the” anywhere in a string of {a-z}, e.g., “there” but not “those”.	CO1	PO2	10
			b)	Convert the following NFA to its equivalent DFA along with construction of transition table and show the step-by-step procedure involved in constructing the DFA.	CO1	PO2
			OR			
	2	a)	Design DFA for accepting binary strings that	CO3	PO3	10
		b)	i) start with 00 ii) having 001 iii) ending with 01 iv) not having 111 v) whose value is multiple of 2			
			Design a NFA for accepting binary strings that have 1 in second last position. Convert the same to DFA.	CO3	PO3	10
			UNIT - II			
	3	a)	Obtain an Non- Deterministic Finite Automata (NFA) for the regular expression $(a+b)^*aa(a+b)^*$. Show the step-by-step procedure involved in constructing the NFA.	CO3	PO3	10
		b)	Obtain the distinguishable table for the automaton and then minimize the states of the following DFA.	CO1	PO3	10

δ	a	b
→ A	B	F
B	G	C
*C	A	C
D	C	G
E	H	F
F	C	G
G	G	E
H	G	C

OR					
4	a)	Apply Pumping Lemma theorem to show that the language, i. $L = \{a^{n!} \mid n \geq 0\}$ is not regular ii. $L = \{0^n \mid n \text{ is a perfect square}\}$	<i>CO3</i>	<i>PO3</i>	10
	b)	Convert the following Finite Automata to Regular Expression, using the Kleene's technique.	<i>CO1</i>	<i>PO3</i>	10
UNIT - III					
5	a)	List out the Applications of Context Free Grammars.	<i>CO1</i>	<i>PO1</i>	4
	b)	Show that the below grammar is ambiguous. $S \rightarrow iCtS \mid iCtSeS \mid a, C \rightarrow b.$	<i>CO2</i>	<i>PO2</i>	6
	c)	Consider the grammar. $S \rightarrow AA \mid 0$ $A \rightarrow SS \mid 1$ Obtain the grammar in Greibach Normal Form (GNF).	<i>CO2</i>	<i>PO2</i>	10
OR					
6	a)	Consider the grammar. $S \rightarrow 0A \mid 1B$ $A \rightarrow 0AA \mid 1S \mid 1$ $B \rightarrow 1BB \mid 0S \mid 0$ Obtain the grammar in Chomsky Normal Form (CNF).	<i>CO2</i>	<i>PO2</i>	10
	b)	Design Context Free Grammar (CFG) to accept the following languages (i) $L = \{a^{n+2} b^m \mid n \geq 0 \text{ and } m > n\}$ (ii) $L = \{a^n b^m c^k \mid n \geq 0 \text{ and } m > n\}$	<i>CO2</i>	<i>PO2</i>	10
UNIT - IV					
7	a)	Design PDA to accept the language $L(M) = \{wCw^R \mid w \in (0,1)^*\}$, where w^R is reverse of w . Show that the string 01C10 is accepted	<i>CO3</i>	<i>PO3</i>	10
	b)	For the grammar: $S \rightarrow aABB \mid aAA$ $A \rightarrow aBB \mid a$ $B \rightarrow bBB \mid A$ $C \rightarrow b$ Obtain the corresponding PDA	<i>CO3</i>	<i>PO3</i>	10
OR					
8	a)	Design Deterministic Push Down Automata for the language $L = \{W, W \in (a+b)^* \text{ and } n_a(w) < n_b(w)\}$ by final state. Show instantaneous description for the string abbab .	<i>CO3</i>	<i>PO3</i>	10

	b)	<p>Obtain CFG that generates the language accepted by the PDA</p> <p>$P = (Q, \Sigma, \Gamma, q_0, Z_0, \delta, F)$</p> <p>$Q = \{q_0, q_1\}$</p> <p>$\Sigma = \{a, b\}$</p> <p>$\Gamma = \{A, Z\}$</p> <p>$q_0 = q_0$</p> <p>$Z_0 = Z$</p> <p>$F = \{q_1\}$</p> <p>$\delta(q_0, a, Z) = (q_0, AZ)$</p> <p>$\delta(q_0, b, A) = (q_0, AA)$</p> <p>$\delta(q_0, a, A) = (q_1, \epsilon)$</p>	<i>CO3</i>	<i>PO3</i>	10
		UNIT - V			
9	a)	Design Turing Machine for $L = \{0^n 1^n \mid n \geq 1\}$. Show that the string 0011 is Accepted.	<i>CO3</i>	<i>PO1</i>	10
	b)	<p>Find a Post Correspondence Solution for following two lists given.</p> <p>$A = (abb, aa, aaa)$ and $B = (bba, aaa, aa)$</p>	<i>CO3</i>	<i>PO3</i>	5
	c)	Explain the programming techniques for Turning Machine.	<i>CO1</i>	<i>PO1</i>	5
		OR			
10	a)	Design a Turing Machine that accepts palindrome strings of a and b.	<i>CO3</i>	<i>PO3</i>	10
	b)	Elaborate on the various components of Turing machine model.	<i>CO1</i>	<i>PO1</i>	5
	c)	Explain Multi stack and Multi tape Turing machine.	<i>CO1</i>	<i>PO1</i>	5
