

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 23CS4PCTFC

Course: Theoretical Foundations of Computations

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks
1	a)	<p>(i) Design Deterministic Finite Automata (DFA) which accepts set of strings such that every string containing 00 as a substring but not 000 as substring. Consider alphabet set as $\Sigma = \{0, 1\}$.</p> <p>(ii) Design NFA for the language $L = \{ \text{all strings over } (0,1)^* \text{ that have at least two consecutive 0's or two consecutive 1's } \}$</p>	<i>CO1</i>	<i>PO1</i>	5
	b)	Convert the following Non-Deterministic Finite Automata (NFA) with Epsilon (ϵ)-transitions to equivalent NFA without Epsilon - transitions by giving the epsilon closure of all the states.	<i>CO 1</i>	<i>PO 1</i>	8
		<pre> graph LR start(()) --> q0((q0)) q0 -- a --> q1((q1)) q1 -- c --> q2(((q2))) q1 -- b --> q3((q3)) q3 -- b --> q1 q2 -- d --> q3 q0 -- ε --> q1 q1 -- ε --> q2 </pre>			
	c)	Construct NFA which accepts set of all strings whose second last symbol is 1. Convert this NFA to DFA using Subset Construction Method. Consider alphabet set as $\Sigma = \{0, 1\}$.	<i>CO 1</i>	<i>PO 1</i>	7
OR					
2	a)	<p>(i) Design DFA to accept strings of a's and b's ending with ab or ba</p> <p>(ii) Design a DFA to accept the language $L = \{ w \mid \text{number of a's in } (w) \geq 1, \text{ number of b's in } (w) \geq 2 \}$</p>	<i>CO 1</i>	<i>PO 1</i>	5

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Convert the following NFA to DFA using Subset Construction Method.	CO 1	PO 1	8
		$\begin{array}{ c c c } \hline \delta & 0 & 1 \\ \hline \rightarrow Q_0 & Q_0, Q_1 & Q_1 \\ \hline * Q_1 & Q_2 & Q_2 \\ \hline Q_2 & \emptyset & Q_2 \\ \hline \end{array}$			
	c)	Convert the following ϵ -NFA to DFA.	CO 1	PO 1	7
UNIT-II					
3	a)	Construct the minimum state automata for the finite automata given below. Consider alphabet set as $\Sigma = \{0, 1\}$.	CO 2	PO 2	10
	b)	Convert the DFA which accepts Even number of 1's to Regular Expression (RE) by eliminating intermediate states method. Consider alphabet set as $\Sigma = \{0, 1\}$.	CO 2	PO 2	10
UNIT - III					
4	a)	Convert the following Grammar to Chomsky Normal Form (CNF) $S \rightarrow abAB, A \rightarrow Bab \mid \epsilon, B \rightarrow Baa \mid A \mid \epsilon$	CO 2	PO 2	10
	b)	Design a Context Free Grammar (CFG) for $L = \{ a^n c^m b^k \mid n=m \text{ or } m \leq k, \text{ for } n, m, k \geq 0 \}$. Write formal definition of the obtained CFG.	CO 2	PO 2	10

OR					
5	a)	Convert the following Grammar to Chomsky Normal Form (CNF) $S \rightarrow AB \mid aB, A \rightarrow aab \mid \epsilon, B \rightarrow bbA$	<i>CO 2</i>	<i>PO 2</i>	10
	b)	Design a CFG for the language that generates the set of (i) All strings with exactly one a (ii) All strings with at least one a (iii) All strings with at least three a's Consider alphabet set as $\Sigma = \{a, b\}$.	<i>CO 2</i>	<i>PO 2</i>	10
UNIT - IV					
6	a)	i. Construct a Non-Deterministic Push Down Automata (NPDA) for accepting all palindromes over the alphabet set $\Sigma = \{a, b\}$ ii. Design Deterministic Push Down Automata (DPDA) for the language $L = \{ a^n b^{2n} \mid n \geq 1 \}$	<i>CO 3</i>	<i>PO 3</i>	8
	b)	Construct PDA that accepts the language generated by the grammar $S \rightarrow aSbb \mid abb$	<i>CO 3</i>	<i>PO 3</i>	6
	c)	Prove that the language $L = \{ a^n b^n c^n, n \geq 1 \}$ is not Context Free Language (CFL)	<i>CO 3</i>	<i>PO 3</i>	6
UNIT - V					
7	a)	Design a Turing Machine (TM) for set of string with equal number of 0's and 1's over $\{0, 1\}^*$	<i>CO 3</i>	<i>PO 3</i>	10
	b)	Determine whether the following (A, B) pairs have a Post Correspondence solution or not, if Yes give solution, if No why, Justify. (i) $A = \{b, babb, ba\}$ $B = \{bb, ba, ba\}$ (ii) $A = \{1^2, 10^2, 1^3\}$ $B = \{1^3, 0^2 1, 1^2\}$	<i>CO 3</i>	<i>PO 3</i>	10
