

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science and Engineering

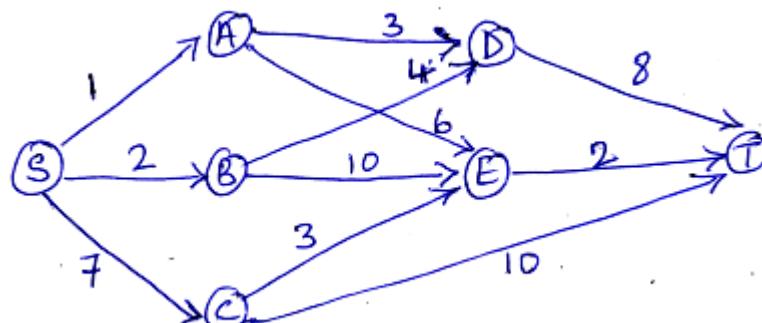
Course Code: 20CS5PEAAG

Course: Advanced Algorithms

Semester: V

Duration: 3 hrs.

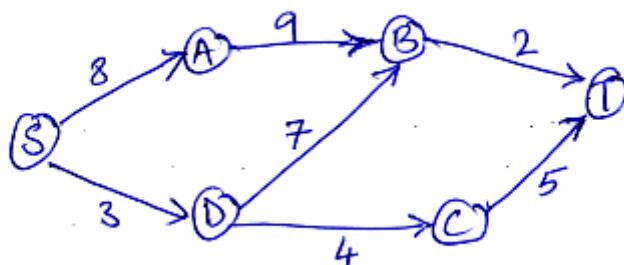
Max Marks: 100


Date: 09.03.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Design an algorithm to find the Longest common subsequence. Apply the same and find the solution for the input: **10**
S1:EZUpkr S2:Ubmrapg


b) Design an algorithm to find the shortest path in a multistage graph and apply the same to find the shortest path for the multistage graph given below: **10**

UNIT - II

2 a) Define Flow network and explain its properties. **05**

b) Design an algorithm for Ford-Fulkerson method and apply the same for the following graph to find the Max-flow: **07**

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

c) What is Maximum Bipartite matching? With an example, explain the method to find maximum flow in a bipartite graph, analyze its time efficiency. **08**

OR

3 a) Apply the concept of Multithreading to perform Matrix multiplication. Write the algorithm and analyze its time efficiency. **8**

b) Design a Multithreaded Merge sort algorithm with an example. **12**

UNIT - III

4 a) Write Boyer-Moore algorithm for String matching problem. Illustrate it on the following input
 Text: BESS_KNEW_ABOUT_BAOBAB
 Pattern: BAOBAB **08**

b) Working module $q=19$, demonstrate Robin-Karp string matching algorithm for the text: 2339023141526739921 and the pattern :31415. **08**

c) Explain working of Naïve string-matching algorithm. **04**

OR

5 a) Design an algorithm for String matching using Finite Automata. Construct finite automata for matching the pattern = abb and for text $T=ababbaababba$. **10**

b) Discuss Horspool string matching algorithm with an example. Write the algorithm and analyze its best, worst and average case efficiencies. **10**

UNIT - IV

6 a) Convert the following linear program into Slack form **07**
 Maximize: $2X_1-6X_3$
 Subject to: $X_1+X_2-X_3 \leq 7$
 $3X_1-X_2 \geq 8$
 $-X_1+2X_2+2X_3 \geq 0$
 $X_1, X_2, X_3 \geq 0$
 What are the basic and non-basic variables?

b) List and explain the applications of Linear programming. **03**

c) Solve the following Linear program using the simplex algorithm. **10**
 Maximize $Z=2A+4B+3C$
 Subject to $3A+4B+2C \leq 60$
 $2A+B+2C \leq 40$
 $A+3B+2C \leq 80$
 $A, B, C \geq 0$

UNIT - V

7 a) Discuss the two strategies for finding the Convex hull. **12**

b) Explain and analyze the Sweep-Line algorithm for determining whether any pair of line segments intersects. **08**
