

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Branch: Computer Science And Engineering

Course Code: 20CS5PEAAG

Course: Advanced Algorithms

Semester: V

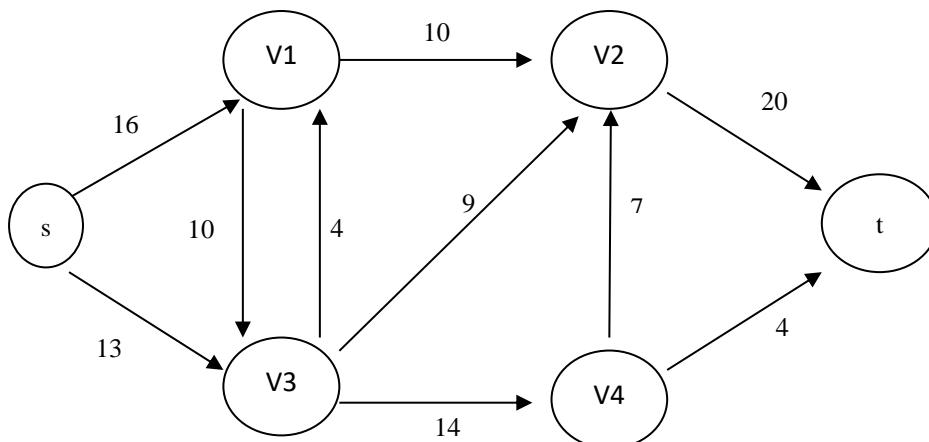
Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may suitably assumed.

UNIT - I

1 a) Design a Dynamic programming based algorithm to find the order in which matrices are to be multiplied to minimize the number of multiplications. Also, apply the same to solve below instance. 12


A1 *A2*A3*A4*A5
A1=6*4, A2=4*6, A3=6*5, A4=5*4, A5=4*8

b) Apply Dynamic programming based algorithm to find the longest increasing subsequence in the below list: 8
2,4,3,8,6,5,9,11,7

UNIT - II

2 a) Design an algorithm for multithreaded matrix multiplication. Also, derive the time complexity for running on a system having 12
 i. One processor
 ii. Unlimited processors
 iii. Speed up on unlimited processors

b) Apply Ford-Fulkerson method to find maximum flow in the below graph. 8

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR

3 a) Design an algorithm for merging two sorted arrays that uses multithreading. **12**

b) Design a multithreaded algorithm to find nth Fibonacci number. Also find WORK and SPAN for n=4. **8**

UNIT - III

4 a) Design an algorithm for string matching that uses finite automata. Also apply the same to find P="babcb" in T="abababbabcb". **12**

b) Write pseudo code/program for Rabin Karp string matching. **8**

OR

5 a) Write and explain Horspool's string matching algorithm. Also apply the same to find P="abca" in T="ababaabcab". **12**

b) Apply Boyer Moore algorithm to find P="bababb" in T="abbababababababb". **8**

UNIT - IV

6 a) Apply simplex algorithm to solve the below LPP. **12**

Maximize: $z=4x_1 + 6x_2$

Subject to :

$-x_1 + x_2 \leq 11$
 $x_1 + x_2 \leq 27$
 $2x_1 + 5x_2 \leq 90$,
 $x_1, x_2 \geq 0$.

b) Convert the below LPP into standard form. **8**

Minimize: $x_1 - x_2$

Subject to:

$$\begin{aligned}x_1 + x_2 &\leq 5 \\x_1 - x_2 &\geq 13\end{aligned}$$

UNIT - V

7 a) Design an algorithm to check whether two line segments intersect or not. **12**

Apply the same to check whether the line segment (p1,p2) intersects with (p3,p4).

$p1=(10,10)$, $p2=(30,30)$, $p3=(10,20)$, $p4=(20,10)$

b) Design pseudocode for Graham Scan algorithm. **8**
