

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

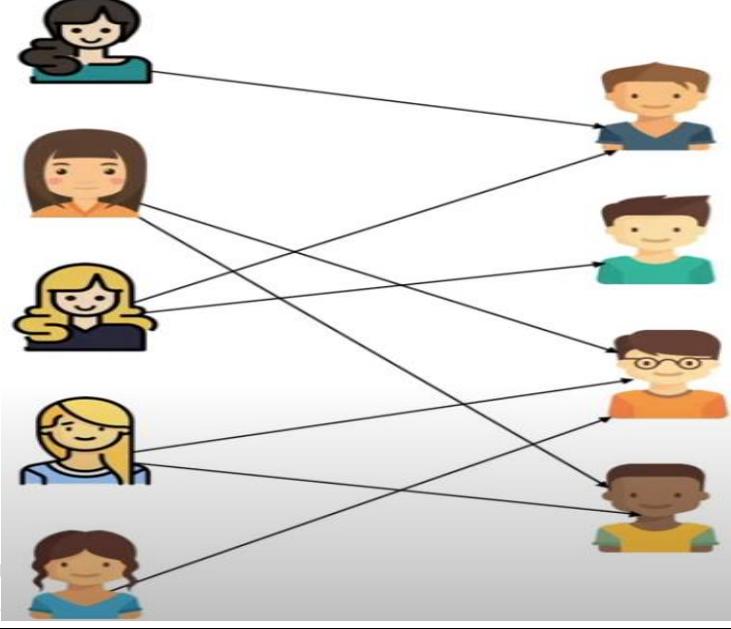
Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 20CS5PEAAG

Course: Advanced Algorithms

Semester: V


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks												
1	a)	<p>Apply Dynamic Programming technique to find solution to rod cutting problem for the following instance: Rod length=5</p> <table border="1"> <tr> <td>Length i</td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> </tr> <tr> <td>Price Pi</td> <td>2</td> <td>5</td> <td>7</td> <td>8</td> <td>9</td> </tr> </table>	Length i	1	2	3	4	5	Price Pi	2	5	7	8	9	CO1	PO1	06
Length i	1	2	3	4	5												
Price Pi	2	5	7	8	9												
	b)	<p>Justify how Matrix-Chain Multiplication using Dynamic Programming technique reduces number of multiplications required compare to Naïve method for the following data:</p> <p>A₁ of order 5X6 A₂ of order 6X4 A₃ of order 4X2 A₄ of order 2X3</p>	CO2,3	PO2,3	08												
	c)	<p>Apply Dynamic Programming technique to find Longest Common Subsequence for the following sequences. Highlight the path in finding Longest Common Subsequence in the table.</p> <p>X=A C A D B Y= C B D A</p>	CO1	PO1	06												
		OR															

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	2	a)	Design a Dynamic programming-based algorithm to find longest increasing subsequence. Apply the same to solve the below problem. 6,5,4,2,7,3,8,	CO1,3	PO1,3	10
		b)	Design a Dynamic programming-based algorithm to solve egg dropping puzzle. Apply the same to solve the below problem. No. of floors=6 No. of eggs=3	CO1,3	PO1,3	10
UNIT - II						
3	a)		Design an algorithm for Multithreaded Fibonacci number generation and calculate the performance metrics: Work, Span and Parallelism for n=4.	CO3	PO3	06
	b)		Differentiate between the Spawn and Sync parallelism keywords used in Multithreaded programming with an example.	CO2	PO2	06
	c)		Find Maximum Bipartite Matching for the below scenario using Maximum Flow Ford-Fulkerson method. Show the steps clearly. Also write an algorithm for the same.	CO2	PO2	08
			OR			
4	a)		Apply Ford Fulkerson method to find maximum flow in the below flow network. Also write an algorithm for the same.	CO1,3	PO1,3	10
			<p style="text-align: center;">Source : 0 Sink : 5</p>			
	b)		Design the Multithreaded algorithm for sorting a given number set of numbers: {13,02,55,33,11,09} using Merge sort technique and	CO1,2, 3	PO1,2, 3	10

		compute the Work, Span and Parallelism achieved. Justify how it is efficient compare to running on uniprocessor system.			
		UNIT - III			
5	a)	Apply Knuth-Morris-Pratt pattern matching algorithm for the following text and pattern string and show how it is efficient compare to Naïve pattern matching algorithm. Also write an algorithm for Knuth-Morris-Pratt pattern matching. TEXT: “bacbabababacaca” PATTERN “ababaca”	CO1	PO1	10
	b)	Justify how Horspool pattern matching is better than Naïve pattern matching algorithm with an example. Also write an algorithm for Horspool pattern matching.	CO2	PO2	10
		OR			
6	a)	Apply Rabin Karp string matching approach to search for pattern P=31415 in the text T=23590231415267399 considering modulus as 13. Also write an algorithm and find the time complexity.	CO1,2	PO1,2	10
	b)	Write the pseudocode for Finite Automata-based pattern matching.	CO3	PO3	06
	c)	Differentiate between Knuth-Morris-Pratt pattern matching algorithm and Naïve Pattern matching algorithm with an example.	CO2	PO2	04
		UNIT - IV			
7	a)	Explain any 2 applications of linear programming.	CO1	PO1	06
	b)	Convert the below LPP to Standard form: minimize $-2x_1 + 3x_2$ subject to $x_1 + x_2 = 7$ $x_1 - 2x_2 \leq 4$ $x_1 \geq 0$,	CO3	PO3	10
	c)	Write the steps to solve LPP using Simplex method.	CO1	PO1	04
		OR			
8	a)	Design an algorithm to solve LPP by Simplex method.	CO3	PO3	10
	b)	Apply Simplex method to solve the below problem. Maximize $Z = 40x_1 + 50x_2$ Subject to $x_1 + 2x_2 \leq 40$ $4x_1 + 3x_2 \leq 120$ $x_1, x_2 \geq 0$	CO1	PO1	10

UNIT - V					
9	a)	Justify how Sweeping technique helps in determining whether any two-line segments in a set of segments intersect or not. Design an algorithm to check whether two-line segments in the set of segments intersect or not.	<i>CO2</i>	<i>PO2</i>	08
	b)	Illustrate with an example the working of the Graham Scan algorithm for finding Convex Hull.	<i>CO1</i>	<i>PO1</i>	06
	c)	Demonstrate how to determine whether consecutive segments p_0p_1 and p_1p_2 turn left or right at point p_1 using cross product.	<i>CO1</i>	<i>PO1</i>	06
OR					
10	a)	Design an algorithm to check whether a pair of line segments intersect or not. Apply the same to check segment AB intersects with CD. $A=(0,0)$ $B=(20,20)$ $C=(0,10)$ $D=(10,0)$	<i>CO1,3</i>	<i>PO1,3</i>	10
	b)	Explain Jarvis march algorithm to find convex hull with an example.	<i>CO1</i>	<i>PO1</i>	10
