

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2024 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 22CS5PEAAM

Course: Advanced Algorithms

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	<i>CO</i>	<i>PO</i>	Marks													
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Design a Dynamic Programming-based algorithm to find Longest Common Subsequence. Apply the same on the below strings to find Longest Common Subsequence. S1=BDCB and S2=BACDB	<i>CO1,3</i>	<i>PO1,3</i>	10													
		b)	Design a Dynamic programming-based algorithm to find order in which matrices are to be multiplied to minimize the number of multiplications. Also apply the same to solve below instance: A1 *A2*A3*A4*A5*A6 <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td style="padding: 5px;">matrix</td> <td style="padding: 5px;"><i>A₁</i></td> <td style="padding: 5px;"><i>A₂</i></td> <td style="padding: 5px;"><i>A₃</i></td> <td style="padding: 5px;"><i>A₄</i></td> <td style="padding: 5px;"><i>A₅</i></td> <td style="padding: 5px;"><i>A₆</i></td> </tr> <tr> <td style="padding: 5px;">dimension</td> <td style="padding: 5px;">30×35</td> <td style="padding: 5px;">35×15</td> <td style="padding: 5px;">15×5</td> <td style="padding: 5px;">5×10</td> <td style="padding: 5px;">10×20</td> <td style="padding: 5px;">20×25</td> </tr> </table>	matrix	<i>A₁</i>	<i>A₂</i>	<i>A₃</i>	<i>A₄</i>	<i>A₅</i>	<i>A₆</i>	dimension	30×35	35×15	15×5	5×10	10×20	20×25	<i>CO1,3</i>	<i>PO1,3</i>
matrix	<i>A₁</i>	<i>A₂</i>	<i>A₃</i>	<i>A₄</i>	<i>A₅</i>	<i>A₆</i>													
dimension	30×35	35×15	15×5	5×10	10×20	20×25													
			UNIT - II																
	2	a)	Design a Multithreaded algorithm to find n^{th} Fibonacci number. Also find WORK and SPAN for $n=4$.	<i>CO1,3</i>	<i>PO1,3</i>	8													
		b)	What is race condition in Multithreaded algorithm? Explain with an example.	<i>CO1</i>	<i>PO1</i>	6													
		c)	How Ford-Fulkerson algorithm can be used to solve Maximum Bipartite problem? Explain with an example.	<i>CO2</i>	<i>PO2</i>	6													
			OR																
	3	a)	Design an algorithm for Multithreaded Matrix Multiplication. Also find speedup achieved with an example.	<i>CO2,3</i>	<i>PO2,3</i>	10													
		b)	How Ford Fulkerson algorithm can be extended to solve Multi Source and Multi Sink Flow problem? Explain with an example.	<i>CO3</i>	<i>PO3</i>	5													

	c)	Analyze the given below Multithreaded Merge sort code and explain the speed up achieved by the code.	CO2	PO2	5
		<pre> MERGE-SORT'(A, p, r) 1 if p < r 2 q = ⌊(p + r)/2⌋ 3 spawn MERGE-SORT'(A, p, q) 4 MERGE-SORT'(A, q + 1, r) 5 sync 6 MERGE(A, p, q, r) </pre>			
UNIT - III					
4	a)	Write Rabin Karp algorithm for string matching and apply the same for finding Pattern P=352 in Text T=23454768352. Use Mod 13. Also find number of spurious hits.	CO1,3	PO1,3	12
	b)	Compare Rabin Karp string matching and Naïve string matching.	CO2	PO2	3
	c)	Compare Finite Automata based string matching and KMP string matching algorithm with respect to time complexity.	CO2	PO2	5
OR					
5	a)	Design algorithm for Finite Automata-based string matching. Apply the same for Pattern P= “ababaca” and Text T= “abbabcababaca”.	CO1,3	PO1,3	12
	b)	Apply KMP string matching algorithm to find Pattern P= “ababaca” in Text T= “abbabcababaca”.	CO1	PO1	8
UNIT - IV					
6	a)	Solve below LPP using Simplex method: Maximize $Z=40x_1+30x_2$ Subject to $x_1 + x_2 \leq 12$ $2x_1+x_2 \leq 16$ $x_1, x_2 \geq 0$	CO1	PO1	10
	b)	Convert below LPP to Standard form: Minimize x_1+x_2 Subject to $x_1-x_2 \geq 5$ $x_1+x_2 \leq 7$ $x_1 \geq 0$	CO1	PO1	5
	c)	Formulate Max flow problem as LPP	CO1	PO1	5
UNIT - V					
7	a)	Write Graham Scan algorithm for finding Convex Hull. Also illustrate its working with an example.	CO1	PO1	10
	b)	Check whether OP and OQ are colinear or not where O=(0,20), P=(10,30) and Q=(-20,30).	CO1	PO1	5
	c)	Illustrate working of Jarvis's March algorithm for finding Convex Hull.	CO1	PO1	5
