

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Computer Science and Engineering

Duration: 3 hrs.

Course Code: 23CS5PEAAM / 22CS5PEAAM

Max Marks: 100

Course: Advanced Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Design an algorithm for optimal parenthesis for matrix chain multiplication.</p> <p>Solve the following instance using Dynamic Programming for the matrices with sizes 4*10, 10*3, 3*12, 12*20, 20*7</p>	CO1	PO1	10
	b)	<p>Suppose there is a building with 7 floors and you are given 3 crystal cubes. Determine the minimum number of experiments required to find the threshold floor from which you can drop a crystal cube without breaking. Write an algorithm for the same and find its time complexity.</p>	CO1	PO1	10
OR					
2	a)	<p>Compute the Longest Common Subsequence for the following strings: TAGTCACG and AGACTGTC.</p> <p>Also write the algorithm for the same.</p>	CO1	PO1	10
	b)	<p>Find the minimum cost involved in reaching from node S to node T for the following multistage graph using forward approach. Design an algorithm for the same.</p>	CO1	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	Write multithreaded code for finding nth Fibonacci number. Find work and span for n=4.	<i>CO1</i>	<i>PO1</i>	06
	b)	Apply Ford Fulkerson algorithm to find the maximum flow that can flow from source 's' to sink 't' for the following flow network.	<i>CO1</i>	<i>PO1</i>	10
	c)	What do you mean by race condition in multithreaded programming? Explain with an example.	<i>CO1</i>	<i>PO1</i>	04
		OR			
4	a)	Write the algorithm for multithreaded matrix multiplication. Show the steps for computation of work and span for multithreaded matrix multiplication.	<i>CO1</i>	<i>PO1</i>	08
	b)	What is bipartite matching? Explain with an example.	<i>CO1</i>	<i>PO1</i>	05
	c)	Derive and show the parallelism achieved for multithreaded merge sort.	<i>CO2</i>	<i>PO2</i>	07
UNIT - III					
5	a)	Write pseudocode for Rabin Karp string matching. Also apply the same for below strings. T=ABABCAABCBCAB and P=BBCA use mod 13.	<i>CO1</i>	<i>PO1</i>	10
	b)	Write pseudocode for Finite Automata based string matching. Also apply the same for below strings. T=ABABABACABA and P=ABABACA	<i>CO1</i>	<i>PO1</i>	10
		OR			
6	a)	Write pseudocode for KMP string matching. Apply the same on below strings T=ABABCAABCBCAB and P=BBCA	<i>CO1</i>	<i>PO1</i>	10
	b)	Compare time complexity of Naive string matching and Rabin Karp string matching. Which algorithm is good? Justify.	<i>CO2</i>	<i>PO2</i>	5

	c)	What are spurious hits in Rabin Karp algorithm? How to eliminate the same?	CO2	PO2	5
		UNIT - IV			
7	a)	Apply Simplex algorithm to solve the below LPP: Maximize: $z=4x_1+6x_2$ Subject to: $-x_1+x_2 \leq 11$ $x_1+x_2 \leq 27$ $2x_1+5x_2 \leq 90$ $x_1, x_2 \geq 0$	CO1	PO1	12
	b)	Convert the below to standard form: Minimize: x_1-x_2 Subject to : $x_1+x_2 \leq 5$ $x_1-x_2 \geq 13$	CO1	PO1	08
		OR			
8	a)	Given a weighted, directed graph $G(V; E)$ with weight function $W : E \rightarrow \mathbb{R}$ mapping edges to real-valued weights, a source vertex s , and destination vertex t . We need to compute the value dt , which is the weight of a shortest path from s to t . Formulate this as LPP.	CO2	PO2	08
	b)	Apply Simplex algorithm to solve the below LPP: Maximize: $z=40x_1+30x_2$ Subject to: $x_1+x_2 \leq 12$ $2x_1+x_2 \leq 16$ $x_1, x_2 \geq 0$	CO1	PO1	12
		UNIT - V			
9	a)	Design pseudocode for Graham Scan algorithm.	CO1	PO1	08
	b)	Design an approximation algorithm for the Traveling Salesman problem. Apply the same to solve the following instance:	CO1	PO1	12
		OR			

	10	a)	Develop an algorithm to check whether two line segments intersect or not. Apply the same to check whether the line segment (p1,p2) intersects with (p3,p4). p1=(10,10), p2=(30,30), p3=(10,20), p4=(20,10)	CO1	PO1	12
		b)	Design an approximation algorithm for the subset sum problem. Show and justify the improvement in time complexity with respect to the exact algorithm.	CO2	PO2	08

REAPPEAR EXAMS 2024-25