

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: V

Branch: Computer Science and Engineering

Duration: 3 hrs.

Course Code: 23CS5PEAAM / 22CS5PEAAM

Max Marks: 100

Course: Advanced Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																
1	a)	Apply Dynamic programming to find Longest Common Subsequence between two strings S1=ABCBDAB and S2=BDCABA.	CO1	PO1	6																
	b)	Find shortest path from source '0' to destination '7' in the Multistage graph given below using Dynamic programming with forward approach. Also write the algorithm for the same.	CO1	PO1	10																
	c)	Outline any 3 characteristics of Dynamic programming.	CO1	PO1	4																
OR																					
2	a)	Design an algorithm to find solution to rod cutting problem using Dynamic programming. Also apply the same to solve below instance. Rod length=8	CO1	PO1	8																
<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td>Length i</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td></tr> <tr> <td>Price Pi</td><td>1</td><td>5</td><td>8</td><td>9</td><td>10</td><td>17</td><td>17</td><td>20</td></tr> </table>			Length i	1	2	3	4	5	6	7	8	Price Pi	1	5	8	9	10	17	17	20	
Length i	1	2	3	4	5	6	7	8													
Price Pi	1	5	8	9	10	17	17	20													

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Apply Dynamic Programming technique to find Longest Increasing Subsequence for the following input sequence: $T = \{0, 4, 12, 2, 10, 6, 9, 13\}$	CO1	PO1	6
	c)	Demonstrate with an example the advantage of Matrix Chain multiplication.	CO2	PO2	6
	UNIT - II				
3	a)	Apply Ford Fulkerson algorithm to find the maximum flow that can flow from source 'S' to sink 'T' for the following flow network.	CO1	PO1	8
	b)	Design an algorithm for multithreaded matrix multiplication. Find speedup achieved.	CO2	PO2	6
	c)	Differentiate between Spawn and Sync in multithreaded programs with an example.	CO2	PO2	6
	OR				
4	a)	Apply Ford-Fulkerson approach to solve Maximum Bipartite matching problem for the below scenario. Show the steps clearly.	CO1	PO1	8
	b)	Write multithreaded code for finding n^{th} Fibonacci number. Show the graph and find work and span for $n=4$.	CO1	PO1	6
	c)	Define Maximum Flow problem. Outline the properties of the flow network.	CO1	PO1	6

UNIT - III					
5	a)	Compare time complexity of Naive string matching and Rabin Karp string matching. Analyze and specify which algorithm is good? Justify your answer.	CO2	PO2	6
	b)	Apply Knuth-Morris-Pratt pattern matching algorithm for the following text and pattern string and show how it is efficient compare to Naïve pattern matching algorithm. Also write an algorithm for the same. TEXT: “ABC ABCDAB ABCDABCDABDE” PATTERN “ABCDABD”	CO1	PO1	10
	c)	Demonstrate the term Spurious hits in Rabin Karp string matching approach with an example.	CO2	PO2	4
OR					
6	a)	Apply Rabin Karp string matching approach to search for pattern P= “26” in the text T= “31415926535” considering hash function as H=key mod 11. Identify number of spurious hits during pattern matching. Also write the algorithm and find the time complexity.	CO1	PO1	10
	b)	Apply Finite automata based string matching for searching BBCAB in ABAABABBCABAA. Also write an algorithm for the same.	CO1	PO1	10
UNIT - IV					
7	a)	Outline the requirements for the Standard form of Linear Programming problem.	CO1	PO1	4
	b)	Apply Simplex method to solve the below Linear Programming problem: Max Z=3x ₁ +2x ₂ subject to the constraints $4x_1+3x_2 \leq 12$ $4x_1+x_2 \leq 8$ $4x_1-x_2 \leq 8$ $x_1, x_2 \geq 0$			10
	c)	Write an example of representing Linear Programming problem in Standard form and Slack form.	CO1	PO1	6
OR					
8	a)	Convert the below Linear Programming Problem to Standard form: Minimize 2a-3b Subject to a+b>=8 $a-b \leq 5$ $a \geq 0$	CO1	PO1	6
	b)	Differentiate between Standard form and Slack form ways of representing Linear Programming problems with an example.	CO2	PO2	6

		c)	Write Simplex algorithm to solve Linear Programming problem.	CO1	PO1	8
			UNIT - V			
	9	a)	Write an algorithm to check whether any pair of line segments intersect in the given N line segments.	CO1	PO1	8
		b)	Justify how cross product helps in determining whether two consecutive segments p_0p_1 and p_1p_2 turns left or right.	CO2	PO2	6
		c)	Explain Jarvis's algorithm for finding Convex Hull. Write an algorithm for the same.	CO1	PO1	6
			OR			
	10	a)	Design an algorithm to check whether two line segments intersect or not. Apply the same on to check whether AB intersects CD, A(0,0), B(20,20), C(50,100) and D(60, 60).	CO1	PO1	10
		b)	Write Graham scan algorithm for finding Convex Hull. Illustrate working of the same with an example.	CO1	PO1	10
