

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 22CS5PCCPD

Course: Compiler Design

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the different phases of compiler and analyze the given line of code and show how this line gets converted to target code in assembly language. position = initial + rate * 60.00	CO2	PO2	10
	b)	Outline the benefits of using sentinels? Give Look-ahead code for sentinels.	CO2	PO2	6
	c)	Construct a transition diagram for identifying: (i) identifiers (ii) whitespaces	CO1	PO1	4
UNIT - II					
2	a)	Eliminate Left recursion from the grammar given below: bexpr -> bexpr or bterm bterm bterm -> bterm and bfactor bfactor bfactor -> not bfactor (bexpr) true false	CO1	PO1	5
	b)	Analyze and design a predictive parser for the grammar E -> 5 + T 3 - T T -> V V * V V + V V -> a b Also construct the Predictive parsing table	CO2	PO2	5
	c)	Analyze and design a LR(0) parser for the grammar S -> S(S)S S -> ϵ And also parse the string " () " give state transition diagram as well.	CO3	PO3	10
OR					
3	a)	Design LR(0) parser for the grammar S -> SS+ SS* a And parse the string "aa+a*" give state transition diagram as well.	CO3	PO3	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Design a LR(1) parser and LALR parser for the grammar. Represent a finite state machine diagram. S -> CC C -> cC d And parse the string "ccd" for CLR and LALR parser.	CO3	PO3	10
		UNIT - III			
4	a)	Give the SDD for Simple Desk Calculator and draw the dependency graph for expression $1*2*3*(4+5)n$ Also outline the type of attribute in each production.	CO1	PO1	10
	b)	Give SDT for simple arithmetic expression using top down approach(L-attributed definition) for a-4+c.	CO1	PO1	10
		UNIT-IV			
5	a)	Explain the various 3 address instructions form. Give examples for each type of instruction.	CO2	PO2	7
	b)	Give the 3 address code for the following: (i) $-(a*b)+(c+d)-(a+b+c+d)$ (ii) if $a < b$ and $c < d$ then $t=1$ else $t=0$	CO3	PO3	7
	c)	Define Quadruples, Triples and Indirect Triples. Translate $a \leftarrow (b+c)$ into Quadruples, Triples and Indirect Triples form.	CO1	PO1	6
		OR			
6	a)	Give SDT for Boolean Expressions.	CO3	PO3	6
	b)	Write the SDD for the following flow control statements: (i) if (ii) if-else (iii) while	CO2	PO2	6
	c)	Obtain DAG for $a + a * (b-c) + (b-c)*d$. Also give the steps of construction.	CO3	CO3	8
		UNIT - V			
7	a)	Generate three address code, basic block and flow graph for the following code snippet: sum=0 for(i=0;i<=10;i++) sum=sum + a[i]	CO3	PO3	10
	b)	With a simple procedure call example explain static and stack allocation.	CO2	PO2	10
