

B.M.S. College of Engineering, Bengaluru-560019
Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E. Semester: V

Branch: Computer Science and Engineering Duration: 3 hrs.

Course Code: 22CS5PCCPD Max Marks: 100

Course: Compiler Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

 2. Missing data, if any, may be suitably assumed.

Im
p

o
rt

a
n

t
N

o
te

:
C

o
m

p
le

ti
n

g
 y

o
u

r
an

sw
er

s,
 c

o
m

p
u
ls

o
ri

ly
 d

ra
w

 d
ia

g
o
n
al

 c
ro

ss
 l

in
es

 o
n
 t

h
e

re
m

ai
n
in

g
 b

la
n

k

p
ag

es
.
 R

ev
ea

li
n

g
 o

f
id

en
ti

fi
ca

ti
o
n

,
ap

p
ea

l
to

 e
v
al

u
at

o
r

w
il

l
b
e

tr
ea

te
d
 a

s
m

al
p
ra

ct
ic

e.

 UNIT - I CO PO Marks

1 a) Illustrate the structure of the compiler with a neat diagram and

apply the same for the expression position=initial +rate*60

CO1 PO1 10

 b) Write a Lex program to count the number of words in a given

input sequence

CO1 PO1 6

 b) Write the transition diagram for recognizing signed numbers CO1 PO1 4

 OR

2 a) Outline the differences between Interpreter and Compiler CO1 PO1 4

 b) Write a program to check if the input sentence ends with any of

the following punctuation marks (?, fullstop, !) using

appropriate meta character

CO1 PO1 6

 c) Explain the concept of input buffering in lexical analyzer with its

implementation code.

CO1 PO1 10

 UNIT - II

3 a) Write a YACC program to implement a basic calculator CO2 PO2 5

 b) Apply predictive parsing for following grammar

S→AB

A→xA / B

B→yxB| z

Also check if the string xyxz is accepted or rejected.

CO2 PO2 10

 c) Develop a recursive descent parser for the grammar :

S→cad

A→ab|a

and for the input “cad” trace the parser.

CO2 PO2 5

 OR

4 a) Eliminate Left recursion from the following grammar.

E -> E + T | E-T | T

T -> T * F | T/F | F

CO1 PO1 5

U.S.N.

F-> (E) | id

 b) Consider the following grammar

S →A+B / (S)

A→ aAa | b

B→ aBa | a

Build the SLR parse table for the above grammar with transition

diagram.

CO2 PO2 10

 c) Eliminate left factoring for the following

 S->bSSaaS|bSSaSb|bSb|a

 P->a|ab|abc|abcd

CO2 PO2 5

 UNIT - III

5 a) Construct schematic rules for the simple type declaration

grammar

D→ T L

T→ int / float

L→ L,id / id

Write a dependency Graph and annotated parse tree for the input

string float id1,id2

CO2 PO2 10

 b) Write semantic rules for a simple desk calculator.

and construct an annotated parse tree for the following

expression given using SDD for a simple desk calculator.

 (3+4)*(5+6)n

CO2 PO2 10

 OR

6 a) Write syntax Directed Definition for a desk calculator having

operations +, * for a top-down parser. Show the dependency

graph for the input 5+4*3.

CO2 PO2 10

 b) Give SDT for simple arithmetic expression using top down

Approach (L-attributed definition) for a-4+c.

CO2 PO2 10

 UNIT - IV

7 a) Explain the various three-address statements and apply this to

find quadruple and triples and indirect triples for a given

expression (a-b)*(c+d)-(x+y)

CO3 PO3 10

 b) Write DAG and the three address code for the following

i) x=Z*y + sin(Z*x)

 Z=x/Z

ii)b=(((a + a) + (a + a)) + ((a + a) + (a + a)))

CO3 PO3 10

 OR

8 a) Write semantic rules for flow of control statements and Boolean

expressions

CO3 PO3 12

 b) Analyze the following code snippet and give its equivalent three

address code

 while(a<c and b>d)

{

 if a=1

3 2 8

 then c=c+1

 else

 while (a <= d)

 a=a+b

}

 UNIT - V

9 a) Construct the Control Flow Graph for the given code:

i = 0; j = 0; k = l;

while (i < n1 && j < n2)

{

if (L[i] <= R[j])

{

arr[k] = L[i]; i++;

}

else

{

arr[k] = R[j]; j++;

}

k++;

}

CO3 PO3 12

 b) Explain the design issues in code generator CO3 PO3 8

 OR

 10 a) Generate machine code for the following three address code

i) x=y-z ii) b=a[i] iii)*p=x

CO3 PO3 6

 b) Outline any 3 addressing modes with example. Calculate

program instruction cost for the following code

i) LD R0,R1 ii) LD R1 ,*100(R2)

CO3 PO3 10

 c) Outline the steps involved in partitioning three address code into

basic blocks

CO3 PO3 4
