

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Computer Science and Engineering

Duration: 3 hrs.

Course Code: 22CS5PCCPD

Max Marks: 100

Course: Compiler Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Illustrate the structure of the compiler with a neat diagram and apply the same for the expression position=initial +rate*60		CO1	PO1	10
		b)	Write a Lex program to count the number of words in a given input sequence		CO1	PO1	6
		b)	Write the transition diagram for recognizing signed numbers		CO1	PO1	4
		OR					
	2	a)	Outline the differences between Interpreter and Compiler		CO1	PO1	4
		b)	Write a program to check if the input sentence ends with any of the following punctuation marks (?, fullstop, !) using appropriate meta character		CO1	PO1	6
		c)	Explain the concept of input buffering in lexical analyzer with its implementation code.		CO1	PO1	10
			UNIT - II				
	3	a)	Write a YACC program to implement a basic calculator		CO2	PO2	5
		b)	Apply predictive parsing for following grammar S→AB A→xA / B B→yxB z Also check if the string xyz is accepted or rejected.		CO2	PO2	10
		c)	Develop a recursive descent parser for the grammar : S→cad A→ab a and for the input “cad” trace the parser.		CO2	PO2	5
		OR					
	4	a)	Eliminate Left recursion from the following grammar. E → E + T E-T T T → T * F T/F F		CO1	PO1	5

		F->(E) id			
	b)	Consider the following grammar $S \rightarrow A+B / (S)$ $A \rightarrow aAa \mid b$ $B \rightarrow aBa \mid a$ Build the SLR parse table for the above grammar with transition diagram.	CO2	PO2	10
	c)	Eliminate left factoring for the following $S \rightarrow bSSaaS \mid bSSaSb \mid bSb \mid a$ $P \rightarrow a \mid ab \mid abc \mid abcd$	CO2	PO2	5
		UNIT - III			
5	a)	Construct schematic rules for the simple type declaration grammar $D \rightarrow T \ L$ $T \rightarrow \text{int} \ / \ \text{float}$ $L \rightarrow \text{L},\text{id} \ / \ \text{id}$ Write a dependency Graph and annotated parse tree for the input string float id1,id2	CO2	PO2	10
	b)	Write semantic rules for a simple desk calculator. and construct an annotated parse tree for the following expression given using SDD for a simple desk calculator. $(3+4)*(5+6)n$	CO2	PO2	10
		OR			
6	a)	Write syntax Directed Definition for a desk calculator having operations +, * for a top-down parser. Show the dependency graph for the input $5+4*3$.	CO2	PO2	10
	b)	Give SDT for simple arithmetic expression using top down Approach (L-attributed definition) for $a-4+c$.	CO2	PO2	10
		UNIT - IV			
7	a)	Explain the various three-address statements and apply this to find quadruple and triples and indirect triples for a given expression $(a-b)*(c+d)-(x+y)$	CO3	PO3	10
	b)	Write DAG and the three address code for the following i) $x=Z*y + \sin(Z*x)$ $Z=x/Z$ ii) $b=((a+a)+(a+a))+((a+a)+(a+a))$	CO3	PO3	10
		OR			
8	a)	Write semantic rules for flow of control statements and Boolean expressions	CO3	PO3	12
	b)	Analyze the following code snippet and give its equivalent three address code $\text{while}(a < c \text{ and } b > d)$ { if a=1	3	2	8

		<pre> then c=c+1 else while (a <= d) a=a+b } </pre>			
		UNIT - V			
9	a)	Construct the Control Flow Graph for the given code: $i = 0; j = 0; k = 1;$ $\text{while } (i < n1 \&\& j < n2)$ $\{$ $\text{if } (L[i] \leq R[j])$ $\{$ $\text{arr}[k] = L[i]; i++;$ $\}$ else $\{$ $\text{arr}[k] = R[j]; j++;$ $\}$ $k++;$ $\}$	CO3	PO3	12
		b) Explain the design issues in code generator	CO3	PO3	8
		OR			
10	a)	Generate machine code for the following three address code i) $x=y-z$ ii) $b=a[i]$ iii) $*p=x$	CO3	PO3	6
		b) Outline any 3 addressing modes with example. Calculate program instruction cost for the following code i) LD R0,R1 ii) LD R1 ,*100(R2)	CO3	PO3	10
	c)	Outline the steps involved in partitioning three address code into basic blocks	CO3	PO3	4
