

U.S.N.									
--------	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2024 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 22CS5PCCPD

Course: Compiler Design

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Analyze how the input $sum = a+b*30$ is processed by the compiler through the various phases.	CO2	PO2	10
		b)	Design a transition diagram for relational operators such as $<$, \leq , $>$, \geq , $==$, $!=$. Emulate the same with a simple pseudocode.	CO1	PO1	8
		c)	Identify and list the lexemes in the following statement <i>printf("Age = %d \n",age);</i>	CO1	PO1	2
			UNIT - II			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Give the algorithm for finding FIRST and FOLLOW Set	CO1	PO1	6
		b)	Construct LR(0) Item set , SLR Parsing table for the following grammar. Validate with appropriate reasoning if the given grammar is SLR or not $S \rightarrow L=R \mid R \quad L \rightarrow *R \mid id \quad R \rightarrow L$	CO2	PO2	8
		c)	Verify if the following grammar is ambiguous? $E \rightarrow E+E \mid E-E \mid E^*E \mid (E) \mid a \mid b$ If ambiguous convert the same to unambiguous grammar with following associativity and precedence () having highest priority + having second highest priority and right associative - having third highest priority and right associative * having least priority and left associative	CO2	PO2	6
			OR			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	3	a)	Find FIRST and FOLLOW set of all variables given below $S \rightarrow ACB \mid CbB \mid Ba \quad A \rightarrow da \mid BC$ $B \rightarrow g \mid \epsilon \quad C \rightarrow h \mid \epsilon$	CO1	PO1	4
		b)	Analyze the following grammar, $S \rightarrow CC \quad C \rightarrow cC \quad C \rightarrow d$ i) Obtain LR(1) item set ii) Design CLR parsing table iii) Justify if the grammar is suitable for CLR or not iv) Show the sequence of moves made by the parser for parsing the input string "ccdd"	CO2	PO2	10

	c)	Analyze if the following grammar is suitable for Predictive parsing. With appropriate justification $E \rightarrow 5+T \mid 3-T \quad T \rightarrow V \mid V*V \mid V+V \quad V \rightarrow a \mid b$	CO2	PO2	6
		UNIT - III			
4	a)	Write SDD for a desk calculator having operations +, * for a top down parser. Show the dependency graph for the input $1+2*3$. Give any 2 topological sorting order.	CO1	PO1	12
	b)	Write the SDT for int [2][3]. Show the annotated parse tree.	CO1	PO1	8
		UNIT - IV			
5	a)	Analyze the following code snippet and give its equivalent three address code <pre>while(a<c and b>d) { if a=1 then c=c+1 else while (a <= d) a=a+b }</pre>	CO3	PO2	5
	b)	Give DAG for the expression $(a+b)*(a+b+c)$	CO3	PO2	3
	c)	Outline with a simple diagram and with appropriate SDD for flow control statement such as if,if-else ,while	CO1	PO1	12
		OR			
6	a)	What is meant by three address code? Construct DAG and equivalent three address code for $((x+y)-((x+y)*(x-y))) + ((x+y)*(x-y))$.	CO3	PO1	6
	b)	Give SDT for various Boolean expressions	CO1	PO1	8
	c)	Show the three address code in various representation such as quadruples, triples for the expression $-(a+b)*(c+d)+(a+b+c)$	CO3	PO1	6
		UNIT - V			
7	a)	List issues in design of code generator	CO1	PO1	5
	b)	Convert the following 3 address code to assembly target instruction i)*p=y ii)a[j]=c	CO3	PO1	5
	c)	Give intermediate code, basic block and flow graph for the code snippet given below (assume i and j are int of size 4 bytes) <pre>for i from 1 to 10 do for j from 1 to 10 do a[i,j]=0.0; for i from 1 to 10 do a[i,i] = 1.0;</pre>	CO3	PO2	10
