

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Computer Science and Engineering

Duration: 3 hrs.

Course Code: 23CS5PECPD

Max Marks: 100

Course: Compiler Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain the different phases of compiler and describe the translation of the statement “Position = initial + rate *6” at each phase.	<i>CO1</i>	<i>PO1</i>	14
		b)	Construct the transition diagram and regular definition for recognizing lexemes matching token for unsigned numbers.	<i>CO</i>	<i>PO3</i>	6
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Explain the applications of compiler technology.	<i>CO1</i>	<i>PO1</i>	5
		b)	Describe the input buffer scheme used in lexical analysis with look ahead code with sentinels.	<i>CO1</i>	<i>PO1</i>	9
		c)	Construct the transition diagram for recognizing lexemes matching token for identifiers and white space.	<i>CO3</i>	<i>PO3</i>	6
UNIT - II						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	3	a)	Consider the grammar, $S \rightarrow +SS \mid *SS \mid a$ Show that the grammar is suitable for the construction of predictive parsing table and parse the input string +*aaa.	<i>CO2</i>	<i>PO2</i>	10
		b)	Construct LR(0) automata for the given grammar $S \rightarrow Aa \mid BAc \mid Bc \mid bBa$ $A \rightarrow d$ $B \rightarrow d$	<i>CO3</i>	<i>PO3</i>	10
OR						

	4	a)	<p>Using the given predictive parsing table, Parse the input string “aaaccbbb”.</p> <table border="1"> <thead> <tr> <th>Terminal/ Input</th><th>a</th><th>c</th><th>b</th><th>\$</th></tr> </thead> <tbody> <tr> <td>S</td><td>$S \rightarrow ASb$</td><td>$S \rightarrow C$</td><td>$S \rightarrow \epsilon$</td><td>$S \rightarrow \epsilon$</td></tr> <tr> <td>A</td><td>$A \rightarrow a$</td><td></td><td>$S^* \rightarrow +S$</td><td>$S^* \rightarrow \epsilon$</td></tr> <tr> <td>C</td><td></td><td>$C \rightarrow c$</td><td>$C \rightarrow \epsilon$</td><td>$C \rightarrow \epsilon$</td></tr> </tbody> </table>	Terminal/ Input	a	c	b	\$	S	$S \rightarrow ASb$	$S \rightarrow C$	$S \rightarrow \epsilon$	$S \rightarrow \epsilon$	A	$A \rightarrow a$		$S^* \rightarrow +S$	$S^* \rightarrow \epsilon$	C		$C \rightarrow c$	$C \rightarrow \epsilon$	$C \rightarrow \epsilon$	CO2	PO2	10
Terminal/ Input	a	c	b	\$																						
S	$S \rightarrow ASb$	$S \rightarrow C$	$S \rightarrow \epsilon$	$S \rightarrow \epsilon$																						
A	$A \rightarrow a$		$S^* \rightarrow +S$	$S^* \rightarrow \epsilon$																						
C		$C \rightarrow c$	$C \rightarrow \epsilon$	$C \rightarrow \epsilon$																						
		b)	<p>Verify whether any conflicts arise for the given input string id + id * id and (id + id) in Shift-Reduce parser using the grammar.</p> $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid id$	CO2	PO2	10																				
			UNIT - III																							
5	a)		<p>For the given syntax directed definition (SDD), verify the dependency between the variables in the expression $1*2*3*(4+5)n$ using S attributed SDT and construct semantic rules, annotated parse tree and dependency graph.</p> <p style="text-align: center;">PRODUCTION</p> <p style="text-align: center;">1) $L \rightarrow E \ n$ 2) $E \rightarrow E_1 + T$ 3) $E \rightarrow T$ 4) $T \rightarrow T_1 * F$ 5) $T \rightarrow F$ 6) $F \rightarrow (E)$ 7) $F \rightarrow digit$</p>	CO2	PO2	10																				
	b)		<p>Design an SDD and SDT for type setting boxes for the grammar</p> $B \rightarrow B1 \ B2 \mid B1 \ sub \ B2 \mid (B1) \mid text$	CO3	PO3	10																				
			OR																							
6	a)		<p>For the given syntax directed definition (SDD), verify the dependency between the variables in the expression “int a, b” and float a, b, c using annotated parse tree and dependency graph.</p> <table border="1"> <thead> <tr> <th>Production</th> <th>Semantic Rules</th> </tr> </thead> <tbody> <tr> <td>1) $D \rightarrow TL$</td> <td>$L.inh = T.type$</td> </tr> <tr> <td>2) $T \rightarrow int$</td> <td>$T.type = integer$</td> </tr> <tr> <td>3) $T \rightarrow float$</td> <td>$T.type = float$</td> </tr> <tr> <td>4) $L \rightarrow L_1, id$</td> <td>$L_1.inh = L.inh$ $addType(id.entry, L.inh)$</td> </tr> <tr> <td>5) $L \rightarrow id$</td> <td>$addType(id.entry, L.inh)$</td> </tr> </tbody> </table>	Production	Semantic Rules	1) $D \rightarrow TL$	$L.inh = T.type$	2) $T \rightarrow int$	$T.type = integer$	3) $T \rightarrow float$	$T.type = float$	4) $L \rightarrow L_1, id$	$L_1.inh = L.inh$ $addType(id.entry, L.inh)$	5) $L \rightarrow id$	$addType(id.entry, L.inh)$	CO2	PO2	10								
Production	Semantic Rules																									
1) $D \rightarrow TL$	$L.inh = T.type$																									
2) $T \rightarrow int$	$T.type = integer$																									
3) $T \rightarrow float$	$T.type = float$																									
4) $L \rightarrow L_1, id$	$L_1.inh = L.inh$ $addType(id.entry, L.inh)$																									
5) $L \rightarrow id$	$addType(id.entry, L.inh)$																									

	b)	Explain L Attributed and S attributed SDD with an example	CO1	PO1	10
		UNIT - IV			
7	a)	Translate the arithmetic expression $a < b$ or $c > d$ or $e < f$ into the following i) Syntax tree ii) Three address code iii) Quadruple iv) Triples v) Indirect triples	CO2	PO2	10
	b)	Illustrate the steps involved in translation of switch statements with syntax directed translation.	CO2	PO2	10
		OR			
8	a)	Define Directed acyclic graph. Give the DAG for the following. Show the steps as each instruction is processed $a = b \times c$ $d = b$ $e = d \times c$ $b = e$ $f = b + c$ $g = f + d$ Give the quadruple representation for the same.	CO1	PO1	10
	b)	Write code and syntax directed definition for flow-of-control statements.	CO1	PO1	10
		UNIT - V			
9	a)	Describe the issues in the design of a code generator.	CO1	PO1	10
	b)	Design an activation record and Activation Tree for quick_sort ([38, 27, 43, 3, 9, 82, 10])	CO3	PO3	10
		OR			
10	a)	Describe the concepts of stack allocation space with example.	CO1	PO1	10
	b)	Construct and explain the Directed acyclic graph for the following basic blocks. i) $b = 12 + a$ $x = b[t1]$ $b[t2] = y$ ii) $x = a[t1]$ $a[t2] = y$ $z = a[t1]$	CO1	PO1	6
	c)	Write flow graph for the following snippet.	CO3	PO3	4

```

1) i = 1
2) j = 1
3) t1 = 10 * i
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)
10) i = i + 1
11) if i <= 10 goto (2)
12) i = 1
13) t5 = i - 1
14) t6 = 88 * t5
15) a[t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

```