

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme : B.E.

Branch : Computer Science and Engineering

Course Code: 22CS5PCCRP

Course : Cryptography

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																																				
1	a)	Demonstrate the encryption and decryption process in multiplicative cipher with an example.	CO1	PO1	06																																				
	b)	Given a group $G = \langle Z_{10}^*, x \rangle$, find all the cyclic subgroups that can be made. Analyze if Z_{10}^* a cyclic group. Justify your answer.	CO2	PO2	06																																				
	c)	<p>i. Use brute-force attack to decipher the following message. Assume that you know it is an affine cipher and that the plaintext “ab” is enciphered to “GL”.</p> <p>Ciphertext=>XPALASXYFGFUKPXUSOGEUTKCDGFXAN MGNVS</p> <p>ii. Analyze the given key below. Use Playfair cipher to encrypt the text “Cryptanalysis is to break ciphers” using this key.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td></td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> </tr> <tr> <td>1</td> <td>z</td> <td>q</td> <td>p</td> <td>f</td> <td>e</td> </tr> <tr> <td>2</td> <td>y</td> <td>r</td> <td>o</td> <td>g</td> <td>d</td> </tr> <tr> <td>3</td> <td>x</td> <td>s</td> <td>n</td> <td>h</td> <td>c</td> </tr> <tr> <td>4</td> <td>w</td> <td>t</td> <td>m</td> <td>i / j</td> <td>b</td> </tr> <tr> <td>5</td> <td>v</td> <td>u</td> <td>l</td> <td>k</td> <td>a</td> </tr> </table>		1	2	3	4	5	1	z	q	p	f	e	2	y	r	o	g	d	3	x	s	n	h	c	4	w	t	m	i / j	b	5	v	u	l	k	a	CO2	PO2	08
	1	2	3	4	5																																				
1	z	q	p	f	e																																				
2	y	r	o	g	d																																				
3	x	s	n	h	c																																				
4	w	t	m	i / j	b																																				
5	v	u	l	k	a																																				
OR																																									
2	a)	Explain Double Transposition Cipher with a figure.	CO1	PO1	06																																				
	b)	Find the result of multiplying $P1 = 000100110$ with $P2 = 1001111$ using the modulus = 100011010 (nine bits). Analyze and find the number of shift-left operations and exclusive-or operations involved in multiplying P1 and P2.	CO2	PO2	06																																				
	c)	<p>i. Eve secretly gets access to Alice’s computer and using her cipher types “abcdefgij”. The screen shows “CABDEHFGIJ”. If</p>	CO2	PO2	08																																				

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<p>Eve knows that Alice is using a keyed transposition cipher, answer the following questions:</p> <p>I. Analyze the type of attack Eve is launching II. Analyze the size of the permutation key</p> <p>ii. Consider the plaintext = "Cryptography and Network Security" (ignore spaces) and the encryption key (3, 2, 6, 1, 5, 4). Analyze and find the decryption key</p>																																																																																							
		UNIT - II																																																																																							
3	a)	Draw and explain MixColumns transformation in AES with an example	CO1	PO1	06																																																																																				
	b)	<p>Write the fifth design criterion of DES and analyze the same for given S-box using the following pairs of inputs.</p> <p>a. 001100 and 110000 b. 110011 and 001111</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td><td>10</td><td>11</td><td>12</td><td>13</td><td>14</td><td>15</td></tr> <tr><td>0</td><td>07</td><td>13</td><td>14</td><td>03</td><td>00</td><td>6</td><td>09</td><td>10</td><td>1</td><td>02</td><td>08</td><td>05</td><td>11</td><td>12</td><td>04</td><td>15</td></tr> <tr><td>1</td><td>13</td><td>08</td><td>11</td><td>05</td><td>06</td><td>15</td><td>00</td><td>03</td><td>04</td><td>07</td><td>02</td><td>12</td><td>01</td><td>10</td><td>14</td><td>09</td></tr> <tr><td>2</td><td>10</td><td>06</td><td>09</td><td>00</td><td>12</td><td>11</td><td>07</td><td>13</td><td>15</td><td>01</td><td>03</td><td>14</td><td>05</td><td>02</td><td>08</td><td>04</td></tr> <tr><td>3</td><td>03</td><td>15</td><td>00</td><td>06</td><td>10</td><td>01</td><td>13</td><td>08</td><td>09</td><td>04</td><td>05</td><td>11</td><td>12</td><td>07</td><td>02</td><td>14</td></tr> </table>	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	0	07	13	14	03	00	6	09	10	1	02	08	05	11	12	04	15	1	13	08	11	05	06	15	00	03	04	07	02	12	01	10	14	09	2	10	06	09	00	12	11	07	13	15	01	03	14	05	02	08	04	3	03	15	00	06	10	01	13	08	09	04	05	11	12	07	02	14	CO2	PO2	06
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15																																																																										
0	07	13	14	03	00	6	09	10	1	02	08	05	11	12	04	15																																																																									
1	13	08	11	05	06	15	00	03	04	07	02	12	01	10	14	09																																																																									
2	10	06	09	00	12	11	07	13	15	01	03	14	05	02	08	04																																																																									
3	03	15	00	06	10	01	13	08	09	04	05	11	12	07	02	14																																																																									
	c)	Analyze how double DES is vulnerable to Meet-in-the-middle attack. Also prove that double DES improves this vulnerability slightly (to 2^{57} tests), but not tremendously (to 2^{112}). Include appropriate figures.	CO2	PO2	08																																																																																				
	UNIT - III																																																																																								
4	a)	Using quadratic residues, solve the following congruences: i) $x^2 \equiv 4 \pmod{7}$ ii) $x^2 \equiv 5 \pmod{11}$	CO1	PO1	06																																																																																				
	b)	Apply Miller-Rabin test & check if 891 is prime or not.	CO1	PO1	06																																																																																				
	c)	Find the value of x for the following set of congruence using CRT: (a) $x \equiv 2 \pmod{7}$ and $x \equiv 3 \pmod{9}$ (b) $x \equiv 4 \pmod{5}$ and $x \equiv 10 \pmod{11}$	CO1	PO1	08																																																																																				
	UNIT - IV																																																																																								
5	a)	Explain the compression function in SHA-512.	CO1	PO1	06																																																																																				
	b)	Briefly analyse the idea behind the Elgamal cryptosystem. i) What is the one-way function in this system? ii) What is the trapdoor in this system? iii) Define the public and private keys in this system. iv) Describe the security of this system.	CO1	PO1	06																																																																																				
	c)	Alice uses Bob's RSA public key ($e = 7$, $n = 143$) to send the plaintext $P = 8$ encrypted as ciphertext $C = 57$. Show how Eve can	CO2	PO2	08																																																																																				

		use the chosen-ciphertext attack if she has access to Bob's computer to find the plaintext			
		OR			
6	a)	Write briefly about Elliptic Curve Cryptosystem. Draw a figure that has one real root and two imaginary ones.	CO1	PO1	06
	b)	Analyze how the three schemes Davies-Meyer Scheme, Matyas-Meyer-Oseas Scheme and Miyaguchi-Preneel Scheme are related and the explain their functionalities	CO2	PO2	06
	c)	In ElGamal cryptosystem, given the prime $p = 31$ a. Choose appropriate values for $e1$ and d , then calculate $e2$. b. Encrypt the message "HELLO". Use 00 to 25 for encoding. Use different blocks to make $P < p$. c. Decrypt the ciphertext to obtain the plaintext. Clearly show all the steps involved in encryption and decryption.	CO2	PO2	08
		UNIT - V			
7	a)	Explain the attacks on Digital Signature.	CO1	PO1	06
	b)	Using the RSA Digital Signature scheme, let $p = 809$, $q = 751$ and $d = 23$. Calculate the public key e . Then do the following: i. Sign and verify a message with $M1 = 100$ Calculate the signature $S1$. ii. Sign and verify a message with $M2 = 50$. Calculate the signature $S2$.	CO2	PO2	06
	c)	In the Diffie-Hellman protocol, $g = 7$, $p = 23$, $x = 3$, and $y = 5$. i. What is the value of the symmetric key? ii. What is the value of $R1$ and $R2$? iii. Consider the above values for Alice and Bob. Demonstrate Man in the middle attack with your own value for Eve.	CO2	PO2	08
