

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

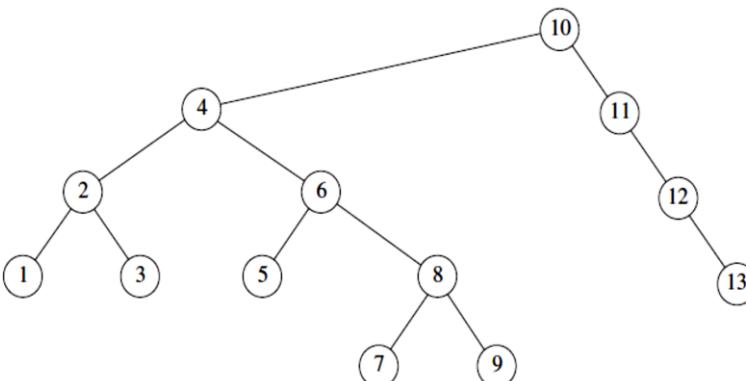
Programme: B.E.

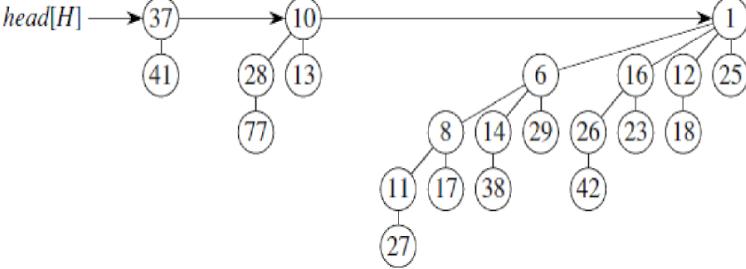
Branch: Computer Science and Engineering

Course Code: 22CS6PEADS

Course: Advanced Data Structures

Semester: VI


Duration: 3 hrs.


Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Show the result of the following sequence of instructions: union (1,2), union(3,4), union(3,5), union(1,7), union(3,6), union(8,9), union(1,8), union(3,10), union (3,11), union(3,12), union(3,13), union(14,15), union(16,0), union(14,16), union (1,3), union(1, 14) when the unions are performed by height.	CO1	PO1	6
	b)	List advantages and disadvantages for the following self-organizing lists: i) Move to Front Method ii) Transpose Method	CO2	PO2	6
	c)	Write a C code for implementation of memory efficient doubly linked list.	CO1	PO1	8
OR					
2	a)	Demonstrate and show the contents of the Skip list after inserting the following sequence of elements: ➤ 21 with level 0 ➤ 43 with level 3 ➤ 76 with level 0 ➤ 16 with level 2 ➤ 26 with level 0 ➤ 251 with level 2 ➤ 98 with level 3 ➤ 87 with level 0 ➤ 79 with level 1 After the skip list is constructed, perform the following deletes and update the list. Show steps clearly. I. Delete 16 II. Delete 79	CO1	PO1	10
	b)	Demonstrate the usage of Unrolled linked list. List its advantages and disadvantages.	CO1	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II						
3	a)	Show the AVL tree that results after each of the integer keys: 9, 27, 50, 15, 2, 21, and 36 are inserted, in that order, into an initially empty AVL tree.	<i>CO1</i>	<i>PO1</i>	10	
	b)	Show that every AVL tree can be colored as a Red-Black tree. Are all Red-Black trees AVL?	<i>CO2</i>	<i>PO2</i>	4	
	c)	List the properties of 2-3 trees with example.	<i>CO1</i>	<i>PO1</i>	6	
OR						
4	a)	What is the significance of the 'a' parameter in a Scapegoat Tree? How does it affect the tree's structure and performance?	<i>CO1</i>	<i>PO1</i>	4	
	b)	Show the result of accessing the key 5 in order in the Splay tree in below Figure. Analyse how splay tree is better in practical situation.	<i>CO2</i>	<i>PO2</i>	8	
	c)		<i>CO3</i>	<i>PO3</i>	8	
UNIT - III						
5	a)	Analyze and compare the efficiency of Tries, Suffix tree and Suffix arrays.	<i>CO2</i>	<i>PO2</i>	6	
	b)	Draw the Suffix tree for S = ABAAB\$.	<i>CO1</i>	<i>PO2</i>	7	
	c)	Given an array A=[1,3,5,7,9,11], design a segment tree to support efficient range sum queries.	<i>CO1</i>	<i>PO1</i>	7	
OR						
6	a)	Construct a Fenwick Tree for the following array {3,2,-1,5,7,-3,2,1}. Also show how the sum from 0 to 6 is computed.	<i>CO1</i>	<i>PO1</i>	9	
	b)	Consider following points in a 2-D plane: (3, 6), (17, 15), (13, 15), (6, 12), (9, 1), (2, 7), (10, 19), construct a K-D tree.	<i>CO1</i>	<i>PO1</i>	7	
	c)	Compare the efficiency of finding the minimum value in a k-d tree versus a balanced binary search tree.	<i>CO2</i>	<i>PO2</i>	4	
UNIT - IV						
7	a)	Construct a Hash table for the following numbers {20, 50, 53, 75, 100, 67, 105, 3, 36, 39} using Cuckoo hashing technique.	<i>CO1</i>	<i>PO1</i>	10	

	b)	What strategies are used to maintain the neighborhood property during insertions and deletions? Analyze the efficiency of these strategies in minimizing collisions and maintaining performance.	CO2	PO2	10
		OR			
8	a)	Demonstrate Perfect hashing with an example.	CO1	PO1	10
	b)	Apply Hopscotch hashing and construct the hash table for the following set of elements: {151,61,23,47,189,79,101,12,31,145,89,132}. Assume neighborhood=4. List the advantages of Hopscotch hashing.	CO1	PO1	10
		UNIT - V			
9	a)	Discuss the properties of Binomial Tree.	CO1	PO1	6
	b)	Show the result of performing three ExtractMin operations in the Binomial heap in the below figure:	CO1	PO1	10
	c)	 Can both insert and findMin be implemented in constant time in Binomial Heap? Justify.	CO2	PO2	4
		OR			
10	a)	Demonstrate the various operations performed on Binomial Heap with an example.	CO3	PO1	10
	b)	Explain with an example Decreasing key operation in the Fibonacci Heap with an example.	CO3	PO1	10
