

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Computer Science and Engineering

Duration: 3 hrs.

Course Code: 20CS6PCCNS

Max Marks: 100

Course: Cryptography and Network Security

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	List and briefly explain the three main goals of cryptography with an example. List some passive attacks and active attacks.			CO I	PO1	6
		b)	Consider a cryptosystem in which $M=\{0,1\}$ and Key space $K=\{0,1,2\}$. Suppose the encryption matrix is as follows. Analyse this cryptosystem for perfect secrecy.			CO2	PO2	6
		c)	Encrypt the message "attack" using the Hill cipher with the key matrix $\begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix}$. Show the steps of encryption.			CO1	PO1	8
			OR					
	2	a)	Use a brute-force attack to decipher the following: Assume that you know it is encrypted using an Affine cipher and that the plaintext "ab" is enciphered to "IL". The encrypted message is "eqqt aqbvuve". i. What are the possible values for the Affine cipher key parameters K_1 and K_2 ? ii. Decrypt the encrypted message using each possible key combination to obtain the plaintext.			CO2	PO2	4
		b)	Find all subgroups of the group $G = \langle \mathbb{Z}_{10}^*, \times \rangle$. Analyze whether the group is cyclic group or not? If yes, show all the generator elements.			CO2	PO2	8
		c)	Show how to multiply $(x^3 + x^2 + x + 1)$ by $(x^2 + 1)$ in $GF(2^4)$ using the efficient algorithm for multiplication using irreducible polynomial: $(x^4 + x^3 + 1)$.			CO1	PO1	8

		UNIT - II			
3	a)	Create a Linear Feedback Shift Register with 4 cells in which $b4 = b1 \oplus b0$. Show the value of output for 20 transitions (shifts) if the seed is $(1110)_2$.	CO2	PO1	6
	b)	Explain single round of DES algorithm with a neat diagram.	CO1	PO1	6
	c)	Write an algorithm for the AES-128 key-expansion routine.	CO2	PO1	4
	d)	AES has a larger block size than DES (128 versus 64). Is this an advantage or disadvantage? Justify your answer.	CO2	PO2	4
		UNIT - III			
4	a)	Determine if the following integers pass the Miller-Rabin primality test or not. Use base 2: i) 109 ii) 61	CO1	PO1	6
	b)	State the Chinese Remainder Theorem and find X for the given set of congruent equations: $X \equiv 4 \pmod{5}$, $X \equiv 10 \pmod{11}$.	CO1	PO1	6
	c)	List the properties of Legendre's symbol. Solve the following Jacobi symbol: a. Jacobi($111, 15$) or $(\frac{111}{15})$ b. Jacobi($13, 15$) or $(\frac{13}{15})$	CO1	PO1	8
		UNIT - IV			
5	a)	Differentiate between symmetric-key and asymmetric-key cryptosystems.	CO2	PO2	4
	b)	In a recent security breach, a financial institution's encrypted communication channel was compromised, leading to significant financial losses. Investigate how an attacker could have used a man-in-the-middle attack against the Diffie-Hellman key exchange to gain unauthorized access to sensitive financial information. Justify your answer with a neat diagram.	CO2	PO2	8
	c)	Find the private key d and perform encryption and decryption using RSA algorithm with $p=3$, $q=11$, $e=7$ and Message/Plaintext=5.	CO1	PO1	8
		OR			
6	a)	In ElGamal, given the prime $p = 31$: i. Choose an appropriate e_1 and d , then calculate e_2 . ii. Encrypt the following messages "H", "E", "L"; use 00 to 25 for encoding. Use different blocks to make $P < p$.	CO1	PO1	8

	b)	Consider an elliptic curve $E_{11}(1,1)$ over a finite field 11, the generator point G is $G = (6,6)$. Bob choose the private value $n=2$.	<i>CO1</i>	<i>PO1</i>	12
		i. Find the equation of the curve. ii. Find at least five points on the curve iii. Find the public key of Bob over elliptic Curve $P_b = n G$.			
UNIT - V					
7	a)	Define a cryptographic hash function. Illustrate the working of Merkle-Damgard scheme with a neat diagram.	<i>CO1</i>	<i>PO1</i>	6
	b)	Compare and contrast a conventional signature and a digital signature.	<i>CO2</i>	<i>PO2</i>	6
	c)	Using the RSA scheme, let $p = 7$, $q = 13$, and $d = 29$. Calculate the public key e . Then i. Sign and verify a message with $M_1 = 35$. Call the signature S_1 . ii. Show that received message is valid with original message.	<i>CO2</i>	<i>PO1</i>	8
