

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 20CS6PCCNS

Course: Cryptography and Network Security

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 10.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	With the help of a neat diagram, list different types of security attacks.	CO2	PO2	6
		b)	Apply Extended Euclidean algorithm to find the inverse of 12 modulo 79.	CO1	PO1	6
		c)	Given that $Z_7 = \{1, 2, 3, 4, 5, 6\} * \text{mod } 7$ is a group, write all the cyclic subgroups of different orders of Z_7 . Is Z_7 a cyclic group?	CO1	PO1	8
OR						
	2	a)	Analyze how secure communication is achieved using Shannon's perfect secrecy. List the requirements for achieving perfect secrecy according to Shannon's theory.	CO2	PO2	7
		b)	Briefly explain the following terms: i) Chosen Message Attack (CMA) ii) Chosen Plain Text Attack (CPA) iii) Chosen Cyber Text Attack (CCA)	CO1	PO1	6
		c)	Show how to multiply $(x^3 + x^2 + x + 1)$ by $(x^2 + 1)$ in $GF(2^4)$ using the efficient algorithm for multiplication using irreducible polynomial: $(x^4 + x^3 + 1)$.	CO1	PO1	7
UNIT - II						
	3	a)	Distinguish between Block ciphers and Stream ciphers.	CO2	PO2	6
		b)	Analyze the process of AES encryption algorithm with a neat diagram.	CO2	PO2	8
		c)	Compare the following with respect to AES and DES: i) Substitution ii) Permutation iii) Round key	CO2	PO2	6

UNIT - III					
4	a)	Apply Chinese Remainder theorem to solve the following congruent equations: $x_1 \equiv 3 \pmod{5}$ $x_2 \equiv 5 \pmod{6}$ $x_3 \equiv 2 \pmod{7}$	CO1	PO1	8
	b)	Apply Fermat's Little theorem to find the values for the following: i) $5^{15} \pmod{13}$ ii) $15^{18} \pmod{17}$	CO1	PO1	6
	c)	Apply Miller Rabin primality testing and check if the following numbers are prime or not: i) 201 ii) 341	CO1	PO1	6
UNIT - IV					
5	a)	Illustrate Diffie-Hellman key exchange algorithm with example.	CO3	PO3	7
	b)	Explain ElGamal encryption. A block of plaintext has been encrypted using ElGamal encryption. Assume that $p=131$, $g=2$ and the recipient's public key=97, What is the plain text corresponding to the ciphertext $C1=103$ and $C2=51$.	CO3	PO3	8
	c)	Demonstrate cycling attack on RSA algorithm with an example.	CO3	PO3	5
OR					
6	a)	With the help of a neat diagram, explain Elliptic curve arithmetic rules with an example.	CO3	PO3	8
	b)	Consider RSA encryption scheme with public key $N=55$ and $e=3$. Suppose the encryption of an unknown message $m=6$, find the encrypted value of $2m \pmod{N}$.	CO3	PO3	6
	c)	Perform encryption and decryption using RSA if $p=7$, $q=11$, $e=13$ and Message/Plain text=5.	CO3	PO3	6
UNIT - V					
7	a)	Analyze how cryptographic hash can be used for Digital signature generation.	CO2	PO2	6
	b)	Compare and contrast a conventional signature and a digital signature.	CO2	PO2	6
	c)	Discuss the idea behind RSA digital signature scheme with a neat diagram.	CO2	PO2	8
