

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

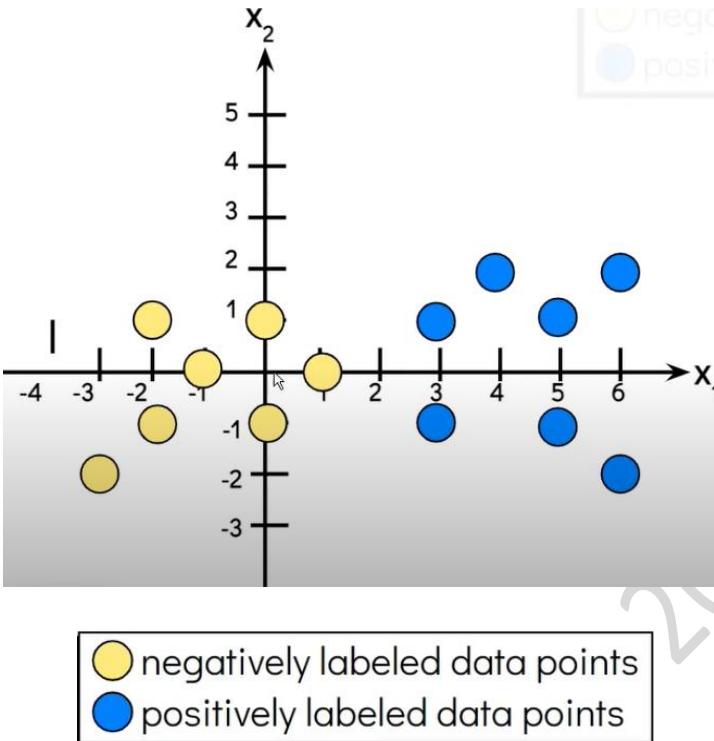
Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 22CS6PCMAL

Course: Machine Learning

Semester: VI


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	List and explain the different types of Machine learning with an example for each.			<i>CO1</i>	<i>PO1</i>	8
		b)	Mention the advantages of writing a function for data preparation than doing manual data preparation.			<i>CO1</i>	<i>PO1</i>	6
		c)	In general, it is easy to get a large amount of data for training, but it is not perfectly representative of the data that will be used in production. Analyze the situation and suggest the solution for the same. Justify your answer.			<i>CO2</i>	<i>PO2</i>	6
			OR					
	2	a)	List and explain the main challenges of Machine Learning.			<i>CO1</i>	<i>PO1</i>	10
		b)	Assume that you now have a shortlist of promising models. You now need to fine-tune them. List and explain the ways in which you can fine tune the model and explain.			<i>CO1</i>	<i>PO1</i>	10
			UNIT - II					
	3	a)	Define the following: i)Information gain ii)Entropy			<i>CO1</i>	<i>PO1</i>	2
		b)	Consider the below dataset and find in which class of people Angelina will lie whose k factor is 3 and age is 5.			<i>CO2</i>	<i>PO2</i>	8

		<table border="1"> <thead> <tr> <th>NAME</th><th>AGE</th><th>GENDER</th><th>CLASS OF SPORTS</th></tr> </thead> <tbody> <tr><td>Ajay</td><td>32</td><td>0</td><td>Football</td></tr> <tr><td>Mark</td><td>40</td><td>0</td><td>Neither</td></tr> <tr><td>Sara</td><td>16</td><td>1</td><td>Cricket</td></tr> <tr><td>Zaira</td><td>34</td><td>1</td><td>Cricket</td></tr> <tr><td>Sachin</td><td>55</td><td>0</td><td>Neither</td></tr> <tr><td>Rahul</td><td>40</td><td>0</td><td>Cricket</td></tr> <tr><td>Pooja</td><td>20</td><td>1</td><td>Neither</td></tr> <tr><td>Smith</td><td>15</td><td>0</td><td>Cricket</td></tr> <tr><td>Laxmi</td><td>55</td><td>1</td><td>Football</td></tr> <tr><td>Michael</td><td>15</td><td>0</td><td>Football</td></tr> </tbody> </table>	NAME	AGE	GENDER	CLASS OF SPORTS	Ajay	32	0	Football	Mark	40	0	Neither	Sara	16	1	Cricket	Zaira	34	1	Cricket	Sachin	55	0	Neither	Rahul	40	0	Cricket	Pooja	20	1	Neither	Smith	15	0	Cricket	Laxmi	55	1	Football	Michael	15	0	Football														
NAME	AGE	GENDER	CLASS OF SPORTS																																																									
Ajay	32	0	Football																																																									
Mark	40	0	Neither																																																									
Sara	16	1	Cricket																																																									
Zaira	34	1	Cricket																																																									
Sachin	55	0	Neither																																																									
Rahul	40	0	Cricket																																																									
Pooja	20	1	Neither																																																									
Smith	15	0	Cricket																																																									
Laxmi	55	1	Football																																																									
Michael	15	0	Football																																																									
	c)	Construct a Regression tree using the following data which consists of 10 data instances and three attributes. Result is the target attribute.	CO3	PO3	10																																																							
		<table border="1"> <thead> <tr> <th>S.No.</th><th>Assessment</th><th>Assignment</th><th>Project</th><th>Result (%)</th></tr> </thead> <tbody> <tr><td>1.</td><td>Good</td><td>Yes</td><td>Yes</td><td>95</td></tr> <tr><td>2.</td><td>Average</td><td>Yes</td><td>No</td><td>70</td></tr> <tr><td>3.</td><td>Good</td><td>No</td><td>Yes</td><td>75</td></tr> <tr><td>4.</td><td>Poor</td><td>No</td><td>No</td><td>45</td></tr> <tr><td>5.</td><td>Good</td><td>Yes</td><td>Yes</td><td>98</td></tr> <tr><td>6.</td><td>Average</td><td>No</td><td>Yes</td><td>80</td></tr> <tr><td>7.</td><td>Good</td><td>No</td><td>No</td><td>75</td></tr> <tr><td>8.</td><td>Poor</td><td>Yes</td><td>Yes</td><td>65</td></tr> <tr><td>9.</td><td>Average</td><td>No</td><td>No</td><td>58</td></tr> <tr><td>10.</td><td>Good</td><td>Yes</td><td>Yes</td><td>89</td></tr> </tbody> </table>	S.No.	Assessment	Assignment	Project	Result (%)	1.	Good	Yes	Yes	95	2.	Average	Yes	No	70	3.	Good	No	Yes	75	4.	Poor	No	No	45	5.	Good	Yes	Yes	98	6.	Average	No	Yes	80	7.	Good	No	No	75	8.	Poor	Yes	Yes	65	9.	Average	No	No	58	10.	Good	Yes	Yes	89			
S.No.	Assessment	Assignment	Project	Result (%)																																																								
1.	Good	Yes	Yes	95																																																								
2.	Average	Yes	No	70																																																								
3.	Good	No	Yes	75																																																								
4.	Poor	No	No	45																																																								
5.	Good	Yes	Yes	98																																																								
6.	Average	No	Yes	80																																																								
7.	Good	No	No	75																																																								
8.	Poor	Yes	Yes	65																																																								
9.	Average	No	No	58																																																								
10.	Good	Yes	Yes	89																																																								
		OR																																																										
4	a)	“KNN is called a lazy learning algorithm”. Explain your answer on the statement.	CO1	PO1	2																																																							
	b)	Consider the below dataset, apply multiple linear regression for the below table using matrix method.	CO2	PO2	8																																																							
		<table border="1"> <thead> <tr> <th>y</th><th>x1</th><th>x2</th></tr> </thead> <tbody> <tr><td>140</td><td>60</td><td>22</td></tr> <tr><td>155</td><td>62</td><td>25</td></tr> <tr><td>159</td><td>67</td><td>24</td></tr> <tr><td>179</td><td>70</td><td>20</td></tr> <tr><td>192</td><td>71</td><td>15</td></tr> <tr><td>200</td><td>72</td><td>14</td></tr> <tr><td>212</td><td>75</td><td>14</td></tr> <tr><td>215</td><td>78</td><td>11</td></tr> </tbody> </table>	y	x1	x2	140	60	22	155	62	25	159	67	24	179	70	20	192	71	15	200	72	14	212	75	14	215	78	11																															
y	x1	x2																																																										
140	60	22																																																										
155	62	25																																																										
159	67	24																																																										
179	70	20																																																										
192	71	15																																																										
200	72	14																																																										
212	75	14																																																										
215	78	11																																																										

	c)	<p>Consider the below graph, Identify the support vectors and draw the hyperplane using Support vector machine.</p> <p>negative labeled data points positively labeled data points</p>	CO2	PO2	10																			
		UNIT - III																						
5	a)	List and explain the types of cross validation techniques in Machine learning.	CO1	PO1	5																			
	b)	<p>Consider the confusion matrix of iris data set, find the following:</p> <ul style="list-style-type: none"> i)Accuracy ii)Precision iii)Recall iv)F1 score of each class v) Macro F1 score vi) Weighted F1-score 	CO2	PO2	10																			
		Predicted values																						
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th colspan="2"></th> <th>Setosa</th> <th>Versicolor</th> <th>Virginica</th> </tr> <tr> <th colspan="2" rowspan="2">Actual values</th> <th>Setosa</th> <td>7</td> <td>0</td> <td>0</td> </tr> </thead> <tbody> <tr> <th>Setosa</th> <td>0</td> <td>10</td> <td>2</td> </tr> <tr> <th>Virginica</th> <td>0</td> <td>2</td> <td>9</td> </tr> </tbody> </table>			Setosa	Versicolor	Virginica	Actual values		Setosa	7	0	0	Setosa	0	10	2	Virginica	0	2	9			
		Setosa	Versicolor	Virginica																				
Actual values		Setosa	7	0	0																			
		Setosa	0	10	2																			
Virginica	0	2	9																					
	c)	Identify the appropriate testing method used when we want to compare two learning algorithms and test whether they construct classifiers that have the same expected error rate and explain the same.	CO2	PO2	5																			
		OR																						
6	a)	Explain Bootstrap sampling method.	CO1	PO1	5																			

	b)	List and explain the guidelines to be followed for Machine Learning experiments.	CO1	PO1	10																								
	c)	Consider that we have a training set and a validation set, we use two algorithms to train two classifiers on the training set and test them on the validation set contingency table and compute their errors. Consider the below contingency table and use the appropriate test to calculate the test statistic.	CO2	PO2	5																								
		UNIT _IV																											
7	a)	Write the k-means clustering algorithm by mentioning all the steps.	CO1	PO1	5																								
	b)	Apply the Adaboost algorithm for the following dataset and classify the dataset with illness as target attribute. Use 3 decision stumps for each of the three attributes	CO2	PO2	10																								
		<table border="1"> <thead> <tr> <th>Gender</th> <th>Age</th> <th>income</th> <th>Illness</th> </tr> </thead> <tbody> <tr> <td>Male</td> <td>41</td> <td>40000</td> <td>Yes</td> </tr> <tr> <td>Male</td> <td>54</td> <td>30000</td> <td>No</td> </tr> <tr> <td>Female</td> <td>42</td> <td>25000</td> <td>No</td> </tr> <tr> <td>Female</td> <td>40</td> <td>60000</td> <td>Yes</td> </tr> <tr> <td>Male</td> <td>46</td> <td>50000</td> <td>Yes</td> </tr> </tbody> </table>	Gender	Age	income	Illness	Male	41	40000	Yes	Male	54	30000	No	Female	42	25000	No	Female	40	60000	Yes	Male	46	50000	Yes			
Gender	Age	income	Illness																										
Male	41	40000	Yes																										
Male	54	30000	No																										
Female	42	25000	No																										
Female	40	60000	Yes																										
Male	46	50000	Yes																										
	c)	Identify the ensemble techniques which trains on an ensemble of numerous models and predicts an output (class) based on their highest probability of chosen class as the output. List and explain the different types the above method uses for the classification technique.	CO2	PO2	5																								
		OR																											
8	a)	Explain the Stacking ensembled method with a neat diagram.	CO1	PO1	5																								
	b)	Apply K(=2)-Means algorithm over the data (185, 72), (170, 56), (168, 60), (179,68), (182,72), (188,77) up to two iterations and show the clusters. Initially choose c1 = (185, 72) and c2 = (170, 56) as initial centroids.	CO1	PO1	10																								
	c)	Consider the two dimensional patterns (4,11),(8,4), (13,5),(7,14). Compute the covariance matrix for the given data set.	CO1	PO1	5																								
		UNIT - V																											
9	a)	Explain dynamic Programming with key methods involved in it.	CO1	PO1	5																								

	b)	<p>Consider the above diagram, apply the Q-learning algorithm to find the optimal path from all the states to a goal state. Consider γ (gamma) value as 0.8.</p>	CO1	PO1	10
	c)	Analyze a situation where you need the agent to have control over its actions and be able to explore different options to find the best solution. Identify which type of reinforcement method to be used for the above scenario. Explain the same.	CO2	PO2	5
OR					
10	a)	Explain Marcov decision process with a neat diagram and example?	CO1	PO1	6
	b)	<p>Imagine you're planning a road trip from Bangalore to Delhi, passing through Hyderabad place and Pachmarhi place. You want to estimate the total travel time for this trip. Each trip is an episode, and the travel times can vary due to factors like traffic and weather.</p> <p>The episodes of the trip are</p> <ul style="list-style-type: none"> Trip 1: Bangalore \rightarrow Hyderabad (2 hours), Hyderabad \rightarrow Pachmarhi (3 hours), Pachmarhi \rightarrow Delhi (4 hours); Total: 9 hours Trip 2: Bangalore \rightarrow Hyderabad (1.5 hours), Hyderabad \rightarrow Pachmarhi (2.5 hours), Pachmarhi \rightarrow Delhi (4.5 hours); Total: 8.5 hours Trip 3: Bangalore \rightarrow Hyderabad (2 hours), Hyderabad \rightarrow Pachmarhi (3 hours), Pachmarhi \rightarrow Delhi (4 hours); Total: 9 hours <p>Explain how Temporal difference method is more efficient than monte carlo method?</p>	CO2	PO2	8
	c)	List and explain the several ways in which Generalization can be achieved in Reinforcement Learning.	CO1	PO1	6
