

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## October 2024 Supplementary Examinations

**Programme: B.E.**

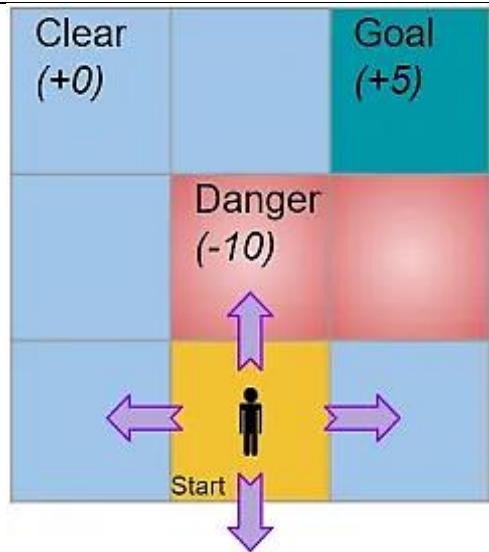
**Branch: Computer Science and Engineering**

**Course Code: 22CS6PCMAL**

**Course: Machine Learning**

**Semester: VI**

**Duration: 3 hrs.**


**Max Marks: 100**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

|                                                                                                                                                                                          |                                                                                      |    | UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |   |   |   |   |     |     | CO  | PO  | Marks |  |          |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |              |   |   |   |   |   |   |   |   |   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|-----|-----|-----|-----|-------|--|----------|---|---|---|---|---|---|---|---|---|--|--|--|--|--|----|---|---|---|---|---|---|---|---|---|--|--|--|--|--|----|---|---|---|---|---|---|---|---|---|--|--|--|--|--|--------------|---|---|---|---|---|---|---|---|---|--|--|--|
| <b>Important Note:</b> Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as | 1                                                                                    | a) | Describe various key purposes of Machine learning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |   |   |   |   |     |     | CO1 | PO1 | 05    |  |          |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |              |   |   |   |   |   |   |   |   |   |  |  |  |
|                                                                                                                                                                                          |                                                                                      | b) | Identify the type of algorithm to be used for the following scenario:<br>i) Classification of email as spam or not<br>ii) Photo-hosting services, such as Google Photos<br>iii) Use to allow a robot to walk in various unknown terrains<br>iv) You have a lot of data about your blog's visitors<br>v) Algorithm relies on a similarity measure to make predictions                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |   |   |   |   |     |     | CO2 | PO2 | 05    |  |          |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |              |   |   |   |   |   |   |   |   |   |  |  |  |
|                                                                                                                                                                                          |                                                                                      | c) | Write brief note on:<br>i) Preparing a dataset to perform a Machine learning task<br>ii) Online learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |   |   |   |   |     |     | CO1 | PO1 | 10    |  |          |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |              |   |   |   |   |   |   |   |   |   |  |  |  |
| UNIT - II                                                                                                                                                                                |                                                                                      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   |   |   |   |   |     |     |     |     |       |  |          |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |              |   |   |   |   |   |   |   |   |   |  |  |  |
| 2                                                                                                                                                                                        |                                                                                      | a) | For the transactions shown in the table below, compute the following:<br>i) Entropy of the collection of transaction records of the table with respect to classification.<br>ii) What is the information gain of a1 and a2 relative to the transactions of the table?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |   |   |   |   |     |     | CO2 | PO2 | 07    |  |          |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |              |   |   |   |   |   |   |   |   |   |  |  |  |
|                                                                                                                                                                                          |                                                                                      |    | <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Instance</th><th>1</th><th>2</th><th>3</th><th>4</th><th>5</th><th>6</th><th>7</th><th>8</th><th>9</th><th></th><th></th><th></th><th></th><th></th></tr> </thead> <tbody> <tr> <td>a1</td><td>T</td><td>T</td><td>T</td><td>F</td><td>F</td><td>F</td><td>F</td><td>T</td><td>F</td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td>a2</td><td>T</td><td>T</td><td>F</td><td>F</td><td>T</td><td>T</td><td>F</td><td>F</td><td>T</td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td>Target class</td><td>+</td><td>+</td><td>-</td><td>+</td><td>-</td><td>-</td><td>-</td><td>+</td><td>-</td><td></td><td></td><td></td><td></td><td></td></tr> </tbody> </table> |   |   |   |   |   |   |     |     |     |     |       |  | Instance | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |  |  |  |  | a1 | T | T | T | F | F | F | F | T | F |  |  |  |  |  | a2 | T | T | F | F | T | T | F | F | T |  |  |  |  |  | Target class | + | + | - | + | - | - | - | + | - |  |  |  |
| Instance                                                                                                                                                                                 | 1                                                                                    | 2  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 | 5 | 6 | 7 | 8 | 9 |     |     |     |     |       |  |          |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |              |   |   |   |   |   |   |   |   |   |  |  |  |
| a1                                                                                                                                                                                       | T                                                                                    | T  | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F | F | F | F | T | F |     |     |     |     |       |  |          |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |              |   |   |   |   |   |   |   |   |   |  |  |  |
| a2                                                                                                                                                                                       | T                                                                                    | T  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F | T | T | F | F | T |     |     |     |     |       |  |          |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |              |   |   |   |   |   |   |   |   |   |  |  |  |
| Target class                                                                                                                                                                             | +                                                                                    | +  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + | - | - | - | + | - |     |     |     |     |       |  |          |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |              |   |   |   |   |   |   |   |   |   |  |  |  |
| b)                                                                                                                                                                                       | Describe the significance of Kernel functions in SVM. List any two kernel functions. |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   |   |   |   |   | CO1 | PO1 | 05  |     |       |  |          |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |              |   |   |   |   |   |   |   |   |   |  |  |  |

|                         | c)                   | <p>Based on a survey conducted in an institution, students are classified based on the two attributes of academic excellence and other activities. Given the following data, identify the classification of a student with <math>X = 5</math> and <math>Y = 7</math> using k-NN algorithm (choose k as 3).</p> <table border="1"> <thead> <tr> <th>X (Academic Excellence)</th><th>Y (Other Activities)</th><th>Z (Classification)</th></tr> </thead> <tbody> <tr> <td>8</td><td>6</td><td>Outstanding</td></tr> <tr> <td>5</td><td>6</td><td>Good</td></tr> <tr> <td>7</td><td>3</td><td>Good</td></tr> <tr> <td>6</td><td>9</td><td>Outstanding</td></tr> </tbody> </table> | X (Academic Excellence) | Y (Other Activities) | Z (Classification) | 8    | 6    | Outstanding | 5    | 6    | Good | 7  | 3 | Good  | 6  | 9  | Outstanding | CO2 | PO2 | 08 |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
|-------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|--------------------|------|------|-------------|------|------|------|----|---|-------|----|----|-------------|-----|-----|----|----|----|----|----|-----|------|------|------|------|------|------|------|------|------|------|--|--|--|
| X (Academic Excellence) | Y (Other Activities) | Z (Classification)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                      |                    |      |      |             |      |      |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
| 8                       | 6                    | Outstanding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                    |      |      |             |      |      |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
| 5                       | 6                    | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                      |                    |      |      |             |      |      |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
| 7                       | 3                    | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                      |                    |      |      |             |      |      |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
| 6                       | 9                    | Outstanding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                    |      |      |             |      |      |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
|                         |                      | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                      |                    |      |      |             |      |      |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
| 3                       | a)                   | Given the set of values $X = (3, 9, 11, 5, 2)^T$ and $Y = (1, 8, 11, 4, 3)^T$ . Evaluate the regression coefficients.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO2                     | PO2                  | 07                 |      |      |             |      |      |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
|                         | b)                   | Using the data in table given below, construct a tree to predict the values of y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO3                     | PO3                  | 08                 |      |      |             |      |      |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
|                         |                      | <table border="1"> <thead> <tr> <th><math>x_1</math></th><th>1</th><th>3</th><th>4</th><th>6</th><th>10</th><th>15</th><th>2</th><th>7</th><th>16</th><th>0</th></tr> </thead> <tbody> <tr> <th><math>x_2</math></th><td>12</td><td>23</td><td>21</td><td>10</td><td>27</td><td>23</td><td>35</td><td>12</td><td>27</td><td>17</td></tr> <tr> <th><math>y</math></th><td>10.1</td><td>15.3</td><td>11.5</td><td>13.9</td><td>17.8</td><td>23.1</td><td>12.7</td><td>43.0</td><td>17.6</td><td>14.9</td></tr> </tbody> </table>                                                                                                                                                | $x_1$                   | 1                    | 3                  | 4    | 6    | 10          | 15   | 2    | 7    | 16 | 0 | $x_2$ | 12 | 23 | 21          | 10  | 27  | 23 | 35 | 12 | 27 | 17 | $y$ | 10.1 | 15.3 | 11.5 | 13.9 | 17.8 | 23.1 | 12.7 | 43.0 | 17.6 | 14.9 |  |  |  |
| $x_1$                   | 1                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                       | 6                    | 10                 | 15   | 2    | 7           | 16   | 0    |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
| $x_2$                   | 12                   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21                      | 10                   | 27                 | 23   | 35   | 12          | 27   | 17   |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
| $y$                     | 10.1                 | 15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.5                    | 13.9                 | 17.8               | 23.1 | 12.7 | 43.0        | 17.6 | 14.9 |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
|                         | c)                   | <p>Consider the dataset with six data points:<br/> <math>\{(x_1, y_1), (x_2, y_2), \dots, (x_6, y_6)\}</math>, where</p> $x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, x_3 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, x_4 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, x_5 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, x_6 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$ <p>and the labels are given by <math>y_1 = y_2 = y_5 = 1</math>, and <math>y_3 = y_4 = y_6 = -1</math>. A hard margin linear support vector machine is trained on the above dataset. Identify the support vectors and draw the hyperplane.</p>                          | CO2                     | PO2                  | 05                 |      |      |             |      |      |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
|                         |                      | <b>UNIT - III</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                      |                    |      |      |             |      |      |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
| 4                       | a)                   | Suppose 10000 patients get tested for flu; out of them, 9000 are actually healthy and 1000 are actually sick. For the sick people, a test was positive for 620 and negative for 380. For the healthy people, the same test was positive for 180 and negative for 8820. Construct a confusion matrix for the data and compute the precision and recall for the data.                                                                                                                                                                                                                                                                                                           | CO3                     | PO3                  | 08                 |      |      |             |      |      |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
|                         | b)                   | Explain the necessity of combining several algorithms for accomplishing a particular task.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO1                     | PO1                  | 06                 |      |      |             |      |      |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |
|                         | c)                   | <p>Explain:</p> <ul style="list-style-type: none"> <li>i) t-test</li> <li>ii) McNemar's test</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO1                     | PO1                  | 06                 |      |      |             |      |      |      |    |   |       |    |    |             |     |     |    |    |    |    |    |     |      |      |      |      |      |      |      |      |      |      |  |  |  |

|          |                 | UNIT – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |           |  |         |                 |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
|----------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|--|---------|-----------------|---------------------|-------------|-----------|-------|------|-----|-------|----|-------|-----|----------|----|---------|----|-------|----|---------|----|----|
| 5        | a)              | Apply the K-Means algorithm over the data (185, 72), (170, 56), (168, 60), (179,68), (182,72), (188,77) up to <b>two iterations</b> and show the clusters. Initially choose the <b>first two objects</b> as initial centroids.                                                                                                                                                                                                                                                              |             |           |  | CO2     | PO2             |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
|          | b)              | Consider a training dataset of six data instances shown in the table. Use 4 Decision stumps for each of the 4 attributes. Apply AdaBoost algorithm and classify the dataset with Job Offer as target attribute.                                                                                                                                                                                                                                                                             |             |           |  | CO2     | PO2             |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
|          |                 | <table border="1"> <thead> <tr> <th>CGPA</th><th>Interactiveness</th><th>Practical Knowledge</th><th>Job Profile</th></tr> </thead> <tbody> <tr> <td><math>\geq 9</math></td><td>Yes</td><td>Good</td><td>Yes</td></tr> <tr> <td><math>&lt; 9</math></td><td>No</td><td>Good</td><td>Yes</td></tr> <tr> <td><math>\geq 9</math></td><td>No</td><td>Average</td><td>No</td></tr> <tr> <td><math>&lt; 9</math></td><td>No</td><td>Average</td><td>No</td></tr> </tbody> </table>              |             |           |  | CGPA    | Interactiveness | Practical Knowledge | Job Profile | $\geq 9$  | Yes   | Good | Yes | $< 9$ | No | Good  | Yes | $\geq 9$ | No | Average | No | $< 9$ | No | Average | No | 08 |
| CGPA     | Interactiveness | Practical Knowledge                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Job Profile |           |  |         |                 |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
| $\geq 9$ | Yes             | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes         |           |  |         |                 |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
| $< 9$    | No              | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes         |           |  |         |                 |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
| $\geq 9$ | No              | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No          |           |  |         |                 |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
| $< 9$    | No              | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No          |           |  |         |                 |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
|          |                 | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |           |  |         |                 |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
| 6        | a)              | Given the data in Table, reduce the dimension from 2 to 1 using the Principal Component Analysis (PCA) algorithm.                                                                                                                                                                                                                                                                                                                                                                           |             |           |  | CO2     | PO2             |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
|          |                 | <table border="1"> <thead> <tr> <th>Feature</th><th>Example 1</th><th>Example 2</th><th>Example 3</th><th>Example 4</th></tr> </thead> <tbody> <tr> <td><math>x_1</math></td><td>4</td><td>8</td><td>13</td><td>7</td></tr> <tr> <td><math>x_2</math></td><td>11</td><td>4</td><td>5</td><td>14</td></tr> </tbody> </table>                                                                                                                                                                 |             |           |  | Feature | Example 1       | Example 2           | Example 3   | Example 4 | $x_1$ | 4    | 8   | 13    | 7  | $x_2$ | 11  | 4        | 5  | 14      | 12 |       |    |         |    |    |
| Feature  | Example 1       | Example 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Example 3   | Example 4 |  |         |                 |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
| $x_1$    | 4               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13          | 7         |  |         |                 |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
| $x_2$    | 11              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5           | 14        |  |         |                 |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
|          | b)              | Use K Means clustering to cluster the following data into two groups. Assume cluster centroids are $m_1=2$ and $m_2=4$ . The distance function used is Euclidean distance. { 2, 4, 10, 12, 3, 20, 30, 11, 25 }                                                                                                                                                                                                                                                                              |             |           |  | CO2     | PO2             |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
|          |                 | <b>UNIT – V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |           |  |         |                 |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
| 7        | a)              | Consider a 3x3 grid, where the player starts in the Start square and wants to reach the Goal square as their final destination, where they get a reward of 5 points. Some squares are Clear while some contain Danger, with rewards of 0 points and -10 points respectively. In any square, the player can take four possible actions to move Left, Right, Up, or Down. Apply the Q-learning algorithm to find the optimal path from all the states to a goal state.<br>Learning rate = 0.8 |             |           |  | CO2     | PO2             |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |
|          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |           |  |         |                 |                     |             |           |       |      |     |       |    |       |     |          |    |         |    |       |    |         |    |    |



b) Differentiate between  
 i) Positive Reinforcement and Negative Reinforcement  
 ii) Dynamic Programming and Monte carlo method

COI

POI

**08**

\*\*\*\*\*