

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Computer Science & Engineering

Duration: 3 hrs.

Course Code: 23CS6PCMAL / 22CS6PCMAL

Max Marks: 100

Course: Machine Learning

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I				CO	PO	Marks
1	a)	List and explain the different types of Machine Learning (ML) algorithms with an example for each.		CO1	PO2	9
	b)	Identify the type of ML algorithm to be used for the following scenario: i) Classification of email as spam or not ii) Photo-hosting services, such as Google Photos iii) Allowing a robot to walk in various unknown terrains iv) You have a lot of data about your blog's visitors v) Algorithm relies on a similarity measure to make predictions		CO1	PO2	5
	c)	List and explain various key purposes of Machine learning.				6
OR						
2	a)	Analyze the following learning problem and write task T, Performance measure P and Training experience E. i. Face Recognition Problem ii. Handwriting Recognition		CO1	PO2	5
	b)	Mention the advantages of writing a function for data preparation than doing manual data preparation.		CO1	PO1	5
	c)	Write brief note on: i) Preparing a dataset to perform a Machine learning task ii) Online learning		CO1	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II																																																												
3	a)	Construct a Regression tree using the following data which consists of 10 data instances and three attributes. Result is the target attribute.		CO1	PO5	10																																																						
		<table border="1"> <thead> <tr> <th>S.No.</th><th>Assessment</th><th>Assignment</th><th>Project</th><th>Result (%)</th></tr> </thead> <tbody> <tr><td>1.</td><td>Good</td><td>Yes</td><td>Yes</td><td>95</td></tr> <tr><td>2.</td><td>Average</td><td>Yes</td><td>No</td><td>70</td></tr> <tr><td>3.</td><td>Good</td><td>No</td><td>Yes</td><td>75</td></tr> <tr><td>4.</td><td>Poor</td><td>No</td><td>No</td><td>45</td></tr> <tr><td>5.</td><td>Good</td><td>Yes</td><td>Yes</td><td>98</td></tr> <tr><td>6.</td><td>Average</td><td>No</td><td>Yes</td><td>80</td></tr> <tr><td>7.</td><td>Good</td><td>No</td><td>No</td><td>75</td></tr> <tr><td>8.</td><td>Poor</td><td>Yes</td><td>Yes</td><td>65</td></tr> <tr><td>9.</td><td>Average</td><td>No</td><td>No</td><td>58</td></tr> <tr><td>10.</td><td>Good</td><td>Yes</td><td>Yes</td><td>89</td></tr> </tbody> </table>	S.No.	Assessment	Assignment	Project	Result (%)	1.	Good	Yes	Yes	95	2.	Average	Yes	No	70	3.	Good	No	Yes	75	4.	Poor	No	No	45	5.	Good	Yes	Yes	98	6.	Average	No	Yes	80	7.	Good	No	No	75	8.	Poor	Yes	Yes	65	9.	Average	No	No	58	10.	Good	Yes	Yes	89			
S.No.	Assessment	Assignment	Project	Result (%)																																																								
1.	Good	Yes	Yes	95																																																								
2.	Average	Yes	No	70																																																								
3.	Good	No	Yes	75																																																								
4.	Poor	No	No	45																																																								
5.	Good	Yes	Yes	98																																																								
6.	Average	No	Yes	80																																																								
7.	Good	No	No	75																																																								
8.	Poor	Yes	Yes	65																																																								
9.	Average	No	No	58																																																								
10.	Good	Yes	Yes	89																																																								
	b)	Consider the below dataset, apply multiple linear regression for the below table using matrix method. Target variable is y.		CO1	PO3	10																																																						
		<table border="1"> <thead> <tr> <th>x1</th><th>x2</th><th>y</th></tr> </thead> <tbody> <tr><td>60</td><td>22</td><td>140</td></tr> <tr><td>62</td><td>25</td><td>155</td></tr> <tr><td>67</td><td>24</td><td>159</td></tr> <tr><td>70</td><td>20</td><td>179</td></tr> <tr><td>71</td><td>15</td><td>192</td></tr> <tr><td>72</td><td>14</td><td>200</td></tr> <tr><td>75</td><td>14</td><td>212</td></tr> <tr><td>78</td><td>11</td><td>215</td></tr> </tbody> </table>	x1	x2	y	60	22	140	62	25	155	67	24	159	70	20	179	71	15	192	72	14	200	75	14	212	78	11	215																															
x1	x2	y																																																										
60	22	140																																																										
62	25	155																																																										
67	24	159																																																										
70	20	179																																																										
71	15	192																																																										
72	14	200																																																										
75	14	212																																																										
78	11	215																																																										
		OR																																																										
4	a)	Apply the linear regression model for the following dataset, where the week and number of working hours spent by a student in a library are tabulated. Based on the dataset, predict the number of hours that will be spent by the student in the 7 th and 9 th week.		CO1	PO3	10																																																						
		<table border="1"> <thead> <tr> <th>Week</th><th>1</th><th>2</th><th>3</th><th>4</th><th>5</th></tr> </thead> <tbody> <tr><td>Hours Spent</td><td>12</td><td>18</td><td>22</td><td>28</td><td>35</td></tr> </tbody> </table>	Week	1	2	3	4	5	Hours Spent	12	18	22	28	35																																														
Week	1	2	3	4	5																																																							
Hours Spent	12	18	22	28	35																																																							
	b)	Explain the working of the ID3 algorithm for decision tree construction. Discuss how entropy and information gain are used in attribute selection. Illustrate the algorithm with a step-by-step example using a small dataset.		CO1	PO1	10																																																						

		UNIT - III																						
5	a)	For the following confusion matrix, calculate Accuracy, Precision, Recall, F1 score for each class.	<i>CO1</i>	<i>PO3</i>	10																			
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th rowspan="2">True class</th> <th colspan="3">Predicted Class</th> </tr> <tr> <th>1</th> <th>2</th> <th>3</th> </tr> </thead> <tbody> <tr> <th>1</th> <td>8</td> <td>2</td> <td>0</td> </tr> <tr> <th>2</th> <td>1</td> <td>9</td> <td>0</td> </tr> <tr> <th>3</th> <td>1</td> <td>2</td> <td>7</td> </tr> </tbody> </table>	True class	Predicted Class			1	2	3	1	8	2	0	2	1	9	0	3	1	2	7			
True class	Predicted Class																							
	1	2	3																					
1	8	2	0																					
2	1	9	0																					
3	1	2	7																					
	b)	Define cross-validation. What is its importance and when should Stratified K-Fold be preferred over K-Fold? Please provide a suitable example.	<i>CO1</i>	<i>PO1</i>	10																			
		OR																						
6	a)	Suppose 10000 patients get tested for flu. Out of them, 9000 are actually healthy and 1000 are actually sick. For the sick people, a test was positive for 620 and negative for 380. For the healthy people, the same test was positive for 180 and negative for 8820. Construct a confusion matrix for the data and compute the precision and recall for the data.	<i>CO2</i>	<i>PO5</i>	8																			
	b)	Write short notes on: <ol style="list-style-type: none"> i. t-test ii. McNemar's test 	<i>CO1</i>	<i>PO1</i>	8																			
	c)	Differentiate between Area-Under-Curve and Receiver-Operating-Characteristic.	<i>CO2</i>	<i>PO2</i>	4																			
		UNIT - IV																						
7	a)	Consider the features X1 and X2 with following datapoints. Compute the principal component using PCA algorithm.	<i>CO1</i>	<i>PO3</i>	12																			
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Feature s</th> <th>E1</th> <th>E2</th> <th>E2</th> <th>E3</th> </tr> </thead> <tbody> <tr> <td>X1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> </tr> <tr> <td>X2</td> <td>4</td> <td>6</td> <td>8</td> <td>10</td> </tr> </tbody> </table>	Feature s	E1	E2	E2	E3	X1	2	3	4	5	X2	4	6	8	10							
Feature s	E1	E2	E2	E3																				
X1	2	3	4	5																				
X2	4	6	8	10																				
	b)	Explain the Stacking ensembled method with a neat diagram.	<i>CO1</i>	<i>PO1</i>	8																			
		OR																						
8	a)	Explain bagging and boosting ensemble methods with a neat diagram and example.	<i>CO2</i>	<i>PO1</i>	10																			
	b)	Use K-Means clustering to cluster the following data into two groups. Assume cluster centroids are $m_1=2$ and $m_2=4$. The distance function used is Euclidean distance $\{2, 4, 10, 12, 3, 20, 30, 11, 25\}$. Run for four iterations.	<i>CO1</i>	<i>PO3</i>	10																			
		UNIT - V																						
9	a)	Explain Markov Decision Process with a neat diagram and give example.	<i>CO1</i>	<i>PO1</i>	10																			
	b)	Explain Active RL and Generalization in Reinforcement Learning (RL).	<i>CO1</i>	<i>PO1</i>	10																			
		OR																						

	a1	a2	a3	a4
S3	3	6	1	2
S4	0	4	5	8

Use the Q-learning update rule (equation) to update the $Q(S3, a2)$. Show solving steps completely and clearly.

 CO2 | *PO3* | **10** |

	10	a)	<p>Consider the scenario:</p> <ul style="list-style-type: none"> Agent is in state S3 Takes action a2 Lands in state S4 Gets reward $R=5$ Learning rate $\alpha=0.6$ Discount factor $\gamma=0.9$ <p>Q-table before update</p> <table border="1"> <thead> <tr> <th></th><th>a1</th><th>a2</th><th>a3</th><th>a4</th></tr> </thead> <tbody> <tr> <th>S3</th><td>3</td><td>6</td><td>1</td><td>2</td></tr> <tr> <th>S4</th><td>0</td><td>4</td><td>5</td><td>8</td></tr> </tbody> </table> <p>Use the Q-learning update rule (equation) to update the $Q(S3, a2)$. Show solving steps completely and clearly.</p>		a1	a2	a3	a4	S3	3	6	1	2	S4	0	4	5	8	<i>CO2</i>	<i>PO3</i>	10
	a1	a2	a3	a4																	
S3	3	6	1	2																	
S4	0	4	5	8																	
		b)	Differentiate between Model based and model free reinforcement with an example.	<i>CO2</i>	<i>PO2</i>																
