

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Computer Science and Engineering

Duration: 3 hrs.

Course Code: 22CS7PENDL

Max Marks: 100

Course: Neural Network and Deep Learning

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Analyze the design of Rosenblatt's perceptron for the McCulloch-Pitts model of a neuron. Show the summing of the linear combination of the inputs applied on synapses using the signal-flow graph of the perceptron with appropriate mathematical equations.	CO1	PO1	5
	b)	Compare and contrast single-layer feedforward networks, multilayer feedforward networks, and recurrent networks in terms of their structural differences, representational power, and suitability for different types of data and tasks with suitable diagrams.	CO2	PO2	5
	c)	Derive the error correction learning algorithm for the perceptron using the perceptron convergence theorem. Formulate the algorithm for adapting the weight vector of the elementary perceptron.	CO2	PO2	10
OR					
2	a)	Consider the classification task. You first train your network on 20 samples. Training converges, but the training loss is very high. You then decide to train this network on 10,000 examples. Is your approach to fixing the problem correct? If yes, explain the most likely results of training with 10,000 examples. If not, give a solution to this problem.	CO2	PO2	5
	b)	Analyze how the threshold and sigmoid activation functions influences the training and performance of the neural networks. In what scenarios does one activation function be preferred over the other.	CO2	PO2	5
	c)	Examine the Least Mean Square (LMS) algorithm for minimizing the instantaneous cost function. Derive the gradient vector for the steepest descent method and illustrate the process using a signal flow graph that incorporates feedback.	CO1	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	Derive the mathematical formulation of the Universal Approximation Theorem for a nonlinear input-output mapping in neural networks.	CO2	PO2	5
	b)	Write the algorithm for stratified k-Fold cross-validation.	CO1	PO1	5
	c)	Assume that the neurons have the sigmoid activation function to perform forward and backward pass on the network. And also assume that the actual output of y is 0.5 and the learning rate is 1. Show weight updates by using back-propagation algorithm.	CO1	PO1	10
OR					
4	a)	Derive the steps in applying the Conjugate Gradient Method and Quasi Newton method for the supervised training of a multilayer perceptron.	CO1	PO1	10
	b)	How training differs from pure optimization ? Write the process to minimize the average training error.	CO1	PO1	10
UNIT - III					
5	a)	Which regularization method leads to weight sparsity? Explain why.	CO1	PO1	5
	b)	Discuss Parameter Sharing and Typing in Deep Learning.	CO1	PO1	5
	c)	Can over fitting happen in a neural network? If yes how to deal with over fitting in a neural network.			10
OR					
6	a)	What is dropout in neural networks? Can it be compared with bagging or boosting in regular machine learning scenario?	CO1	PO1	5
	b)	Analyse the importance of regularization techniques that encourage sparsity and discuss the impact of the strategy on model parameters.	CO2	PO2	5
	c)	Explain Data Augmentation Techniques.	CO1	PO1	10
UNIT - IV					
7	a)	Describe the Pooling operation in CNN.	CO1	PO1	5

	b)	The input image has been converted into a matrix of size 12 x 12 and a kernel/filter of size 3 x 3 with a stride of 1. Determine the size of the convoluted matrix?	CO2	PO2	5
	c)	Show the different variants of the convolution in terms of convolution with a stride and the effect of zero padding on network size with appropriate diagrams.	CO1	PO1	10
OR					
8	a)	What will happen if the Learning Rate is set too low or too high?	CO1	PO1	5
	b)	Can we use CNN to perform dimensionality reduction? If yes then which layer is responsible for dimensionality reduction particularly in CNN.	CO1	PO1	5
	c)	Describe the architecture of a typical Convolutional Neural Network (CNN)?	CO1	PO1	10
UNIT - V					
9	a)	Discuss the vanishing gradient in RNN and how they can be solved.	CO1	PO1	5
	b)	Illustrate unfolding computational graph with example.	CO1	PO1	5
	c)	Draw and explain the architecture of Recurrent Neural Network Architecture.	CO1	PO1	10
OR					
10	a)	How the Sequence to Sequence Model works?	CO1	PO1	10
	b)	Differentiate between recurrent neural networks and recursive neural networks.	CO2	PO2	5
	c)	What is Gradient Clipping? Why is it essential in training RNNs?	CO1	PO1	5
