

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 21EE1ESBEE / 21EE2ESBEE

Course: Basic Electrical Engineering

Semester: I / II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
1	a)	With an appropriate example, state and explain Kirchhoff's Laws.	CO2	PO1	06	
	b)	What is RMS value of a sinusoidal current wave? Arrive at an expression for the same in terms of peak value.	CO3	PO2	07	
	c)	An ac circuit consists of a pure resistance of 10Ω and is connected to an ac supply of 230 V, 50 Hz. Calculate the (i) current (ii) power consumed and (iii) equations for voltage and current.	CO3	PO2	07	
			UNIT - II			
2	a)	A series circuit with $R=10\Omega$, $L=50\text{mH}$ and $C=100\mu\text{F}$ is supplied with 200V, 50Hz. Find i) the impedance ii) current iii) power and iv) power factor.	CO3	PO2	07	
	b)	Derive the relationship between line and phase current in a 3 phase delta connection with vector diagram.	CO2	PO1	08	
	c)	List the advantages of 3 Ø system over 1 Ø system.	CO1	PO1	05	
			UNIT - III			
3	a)	Explain principle of operation of a single phase transformer and derive the emf equation.	CO2	PO1	07	
	b)	Describe the construction of a DC Motor with a neat labelled sketch.	CO3	PO2	07	
	c)	For a 25kVA, 2000/200 V transformer, Iron and copper losses are 350 watts and 400 watts respectively. Calculate, the efficiency at half and 3/4th full load and upf.	CO3	PO2	06	
			OR			
4	a)	Deduce the equation for armature torque of a DC motor.	CO2	PO1	06	
	b)	With neat diagrams, explain shell type and core type transformers.	CO2	PO1	06	
	c)	A 4 pole, 220 V. lap connected DC shunt motor has 36 slots, each slot containing 16 conductors. It draws a current of 40 A from the	CO3	PO2	08	

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		supply. The field resistance and armature resistance are 110, 0.1 respectively. The motor develops an output power of 6 kW. The flux per pole is 40 mwb. Calculate a) the speed b) the torque developed by the armature and c) the shaft torque			
		UNIT - IV			
5	a)	With a neat sketch, explain the different types of rotors in a 3 phase induction motor.	CO1	PO1	08
	b)	With the usual notations, derive the expressions for phase emf and line emf of a 3ϕ star connected alternator.	CO3	PO2	07
	c)	A 2 pole, 3- ϕ alternator running at 3000 rpm has 42 armature slots with 2 conductors in each slot. Calculate flux/ pole required to generate a line voltage of 2300 volts. $K_d = 0.952$ and $K_p = 0.956$.	CO3	PO2	05
		OR			
6	a)	With the help of relevant phasor diagrams, show that when the three phase supply is given to the stator winding of the three phase induction motor, a rotating magnetic field is produced in the airgap.	CO3	PO2	08
	b)	With the help of neat sketches, compare the salient pole rotor and non-salient pole rotors in an alternator.	CO2	PO1	08
	c)	A 4 pole, 3 phase, 50 Hz induction motor runs at a speed of 1470 r.p.m. Find the synchronous speed and the slip.	CO3	PO2	04
		UNIT - V			
7	a)	Compare MCB and fuse.	CO4	PO6	04
	b)	With the help of detailed block diagram, explain the working of EV.	CO4	PO6	07
	c)	Define earthing. Why earthing is necessary? Explain with the help of neat diagram the pipe earthing.	CO4	PO6	09
